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Abstract. Many practical problems in modern finance can be cast into the framework of stochastic 

differential equations, so that numerical techniques from engineering can be adapted. The static 1D 

problem in financial engineering characterized by non-self-adjoint is examined in this paper using the 

Finite Element Method (FEM). The finite element for the problem mentioned above is established 

based on Galerkin criterion. And numerical examples, such as first exit time of a geometric Brownian 

motion, and convection-dominated problems, are solved using FEM. The results are compared with 

analytic solution, FDM respectively. It is shown that high computational accuracy and efficiency are 

achieved using FEM and this method can be further used in dynamic problem, 2D problem of financial 

engineering. 

Introduction 

In modern finance, many practical problems can be cast into the framework of stochastic differential 

equations, so that numerical techniques from engineering can be adapted [1, 2]. Differential equations 

have been studied for some centuries by mathematicians, physicists and engineers, so that a great deal 

of knowledge from these areas is available. Techniques for finding numerical solutions for differential 

equations arising in finance are the topic of this paper. The Method of Finite Elements (FEM) has been 

put forward through a number of academic papers focusing on structures analyses[3-8]. Here, we want 

to use the Galerkin FEM, one of the Weighted Residual Methods, to get the numerical solutions of 1D 

static problem in finance engineering which is characterized by non-self-adjoint. 

Galerkin Finite Element 

A general two-point boundary value problem arising in economics which, furthermore, is not 

self-adjoint[3]: 

           1 2 0u x a x u x a x u x f x    
 

(1) 

   min min

1 1 1u x u x     (2) 

   max max

2 2 2u x u x     (3) 

 u x  is the unknown function defined during  min max,x x  in equation (1),  u x 、  u x  are the 1st 

order and 2nd order derivartives respectively. Equation (2), (3) are the boundary conditions. 

The Galerkin criterion requires that the following expression vanishes: 

 
max

min 1 2 0
x

x
u u a u a u f dx       

(4) 
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u  is the variation of u.To eliminate the second order derivative  u x , the first term from the integral 

in equation (4) is integrated by parts: 

   

   

max max maxmax

minmin min min

max

min

1 2 1 2

1 2

    

. . 0

x x xx

xx x x

x

x

u u a u a u f dx u u u u dx u a u a u f dx

u u a u u a u u f u dx b t u

   

   

            

        

  


 

(5) 

 . .b t u  is the boundary conditions. 

Assuming that an approximate solution between two nodes xi, xi+1 can be represented by a straight 

line, linear interpolation is employed on this interval:， 

 eu x ax b   (6) 

Both a and b are to be chosen in a way that  e

i iu x u  and  1 1

e

i iu x u  . This results in:  

( )eu  Nu . (7) 

N is called elemental linear interpolation functions or shape funtions. 

Substituting the approximate function Equation (7) into the boundary value problem given by 

Equation (5) leads to: 

 
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fdx
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
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u N N N N N N u

u N

u K u u F

 
(8) 

where 

   

 

1

1

1 2

i

i

i

i

xe T T T

x

xe T

x
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



     







K N N N N N N
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(9) 

Finally, the equation (5) can be written as 

 
     

max

min 1 2

( ) ( ) ( )

    

. . 0

x

x

e ee T e e T

u u a u a u f dx

b t u



 

   

    


u K u u F

 
(10) 

So the equation (10) can be simplified due to the arbitrariness of ( )eu ， 
  ( ) ( )e e eK u F  (11) 

each elemental matrix 
 e

K and vector ( )e
u , 

( )e
F  can be expanded to the global ones as follows as the 

same as classical FEM: 

Ku F  (12) 

As to the boundary contions  . .b t u ，when 1 0   and 2 0  ，  . .b t u  can be written as 

 
max

min

2 2 1 1 1
1

2 1

   . .
x N

Nx

u u
b t u u u u u

   
  

 

 
  

 (13) 

The global matrix K 、global vector F could be updated as： 
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1 2
11 11

1 2

1 2
1 1

1 2

ˆ ˆ,   

ˆ ˆ,      

NN NN

N N

 

 

 

 


   


   

K K K K

F F F F
 (14) 

The rest elements of K̂ , F̂ are consistent with K , F，so the equation（12）can be written as 

ˆ ˆKu F . (15) 

When 
1 0   and 

2 0  ，  . .b t u  can be written as 

 
max

min 1 1   . .
x

N Nx
b t u u u u u u u      

 
(16) 

Because of 
1 0   and 

2 0  ，
1u 、

Nu  are constants， 

1 2
1

1 2

,    Nu u
 

 
 

 (17) 

so 

1 0Nu u  
 

(18) 

The global matrix K 、global vector F could be updated as：  

11 1

1 2
1

1 2

ˆ ˆ1,   0,   2, , .

ˆ ˆ1,  0,  1, , 1.

ˆ ˆ,      

j

NN Nj

N

j N

j N

 

 

  

   

 

K K

K K

F F

 (19) 

The rest elements of K̂ , F̂ are are consistent with K , F，so the equation（12）can be also written as 

ˆ ˆKu F  (20) 

The other boundary condition，like 1 0  and 2 0  ，can be treated similarly. 

The unknown variables u  can be obtained after solving the linear algebraic equations (15), (20). 

Numerical Results 

To illustrate the effectiveness of the FEM in analysis of 1D static problem in finance engineering, 

numerical examples are studied in this section. 

First exit time of a geometric Brownian motion. We first compute numerically the expected exit 

time of a geometric Brownian motion[9] 

dY aYdt YdX  . (21) 

with a = 0.1 and σ = 0.2 leaving the region [20, 60]. In practice, such a problem arises when one wants 

to know how long it takes for a given asset to leave a certain corridor for the first time. This information 

can be useful, for instance, in assessing the risk of a double barrier option. 

Labeling the independent variable as x, this problem can be formulated as an ODE 
2

2 1
2

axu x u


     with    min max0,   0u x u x  . (22) 

The analytical solution to the problem (22) is given by[3]: 

 
 

 

2

2

1 2
min min

2 min max1 2
max min

11
ln ln

2 1

a

a

x xx x
u x

a x xx x









 
              

 

. (23) 
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Table 1  First exit time of a geometric Brownian motion 

Asset price x Analytical solution Numerical solution 

20.0 0.00000000 0.00000000 

25.0 5.41981128 5.41981128 

30.0 6.08946721 6.08946721 

35.0 5.42660555 5.42660555 

40.0 4.37095254 4.37095254 

45.0 3.22515949 3.22515949 

50.0 2.09472725 2.09472725 

55.0 1.01618148 1.01618148 

60,0 0.00000000 0.00000000 

The finite element discretization consists of 200 equal-size elements with linear basis 

function.The numerical results compared with analytical solution are listed in Table 1. It is seen that 

the finite element formulations are able to provide a very good estimates of the first exit time.  

Convection-dominated problems. Recently, various publications dealing with 

convection-dominated problems in finance have appeared [10]. In equity and FX option pricing 

convection-dominated problems arise because of low asset prices and/or low volatilities. We present 

the numerical problems arising in convection-dominated problems with the help of an example. 

Consider the following boundary value problem 

0ku u     with    0 0,   1 1u u  . (24) 

For small k the above differential equation loses its elliptic character and starts to resemble a 

hyperbolic problem. Then, Equation (24) is called convection-dominated because the convection term 

u dominates the character of the problem. Although Equation (24) is still elliptic by definition, 

techniques for elliptic problems tend to fail for decreasing k. This problem is solved by: 

       1
1 1 .

x k k
u x e e    (25) 

The finite element discretization consists of 200 equal-size elements with linear basis function.The 

numerical results when k=0.002 compared with analytical solution and finite difference method (FDM) 

are depicted as Fig.1. It is seen that the FDM solution exhibits an oscillation (blue box) while the FEM 

solution provide acceptable predictions for convection-dominated problems. 

 
Figure. 1  Results of a convection-dominated example with k=0.002 
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Conclusion 

The static 1D problem in financial engineering characterized by non-self-adjoint is examined in this 

paper using the Finite Element Method. The finite element for the problem mentioned above is 

established and numerical results from FEM are compared with analytic solution, FDM respectively. It 

is shown that high computational accuracy and efficiency are achieved using FEM and this method can 

be further used in dynamic problem, 2D problem of financial engineering.  
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