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Abstract. In this paper, we establish a class of iterated integral inequality, which includes a noncons 

-tant term outside the integrals. The upper bound of the embedded unknown function in the inequality 

is estimated explicitly by adopting novel analytical techniques, such as: change of variable, 

amplification method, differential and integration. The derived result can be applied in the study of 

qualitative properties of solutions of fractional integral equations. 

Introduction 

Gronwall-Bellman inequality [1, 2] can be stated as follows: If u  and f  are non-negative continuous 

functions on an interval [ , ]a b  satisfying 

( ) ( ) ( ) , [ , ].
t

a
u t c f s u s ds t a b                                                                                                 (1) 

For some constant  0c  , then 

( ) exp( ( ) ), [ , ].
t

a
u t c f s ds t a b   

In 2011, Abdeldaim et al. [3] studied a new integral inequality of Gronwall-Bellman-Pachpatte type 

      0
0 0 0

( ) [ ( ) ( ) ( )] ( ) ( )[ ( ) ( ) ( ) ] .
t t s

u t u g s u s q s ds g s u s u s h u d ds                                                  (2)  

In 2014, El-Owaidy, Abdeldaim, and El-Deeb[4] investigated a new retarded nonlinear integral 

inequality 
( )

( ) ( ) ( ) ( ) ( ) ( ) .
t t

p p

a a
u t f t g s u s ds h s u s ds



                                                                                  (3) 

In 2014, Zheng [5] discussed the inequality of the following form 

1 1

0 0

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) .

( ) ( )

t A

u t C t s g s u s ds A s g s u s ds 

 

     
                                              (4) 

During the past few years, some investigators have established a lot of useful and interesting integral 

inequalities in order to achieve various goals; see [3-10] and the references cited therein. 

In this paper, on the basis of [3, 4, 5], we discuss a class of  nonlinear weakly singular integral 

inequality 

1 1

0 0

1 1
( ) ( ) ( ) [ ( ) ( ) ( ) ( )] ( ) ( ) ( ) ( )

( ) ( )

t t

u t f t t s g s u s q s f s ds t s g s f s u s 

 

      
    

1

0

1
[ ( ) ( ) ( ) ( ( )) ]

( )

s

u s s h w u d ds   


  
                                                                                     (5) 

Main result 

Throughout this paper, let [0, ).R    

Definition 1(see [7,8]). The modified Riemann-Liouville derivative of order   is defined by the 

following expression: 
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                                                          (6) 

Definition 2(see [7, 8]). The Riemann-Liouville fractional integral of order   on the interval is 

defined by 

1

0 0

1 1
( ) ( )( ) ( ) ( ) .

(1 ) ( )

t t

tI f t f s ds t s f s ds  

 

  
                                                                   (7) 

In 2014, Zheng [5] proved the following property. 

Lemma 1. Suppose that 0 1  , f is a continuous function, then 

( ( )) ( ).t tD I f t f t                                                                                                                           (8) 

Some important properties for the modified Riemann-Liouville derivative and frational integral are 

listed as follows (see [9, 10]): 

[ ( )] [ ( )] ( ) [ ( )]( ( )) ,t g t gD f g t f g t D g t D f g t g t     
                                                                          (9) 

( ( )) ( ) (0),t tI D f t f t f                                                                                                                    (10) 

0,tD C  where C is a constant.                                                                                                   (11) 

Define three functions by w in (5) 

0

exp( 2ln( ))
( ) , .

exp( ln( ))

u s ds
W u u R

w s


 
 

                                                                                            (12) 

Theorem 1.Suppose that, , , ( , ),g h q C R R  3, ( , )w f C R R  are nondecreasing functions 

with ( ) / ( / ),w u v w u v ( ) 0f u  for all 0, 0.u v   If ( )u t  satisfies (10), then 

1 1 1

0 0

1 1
( ) exp ln[ ( ( exp( ln(1 ( ) ( ) ) ( ) ( ) )

( ) ( )

t t

u t W W T s q s ds T s g s ds 

 

  
        

 
 

 

1 1

1
0 0

1 1
( ) ( ) ) ( ) ( ) )] ( ), [0, ],

( ) ( )

t t

t s g s ds t s h s ds f t t T 

 

  
    
  

                                          (13)  

where 1T  is the largest number such that  

1 11 1

1 1
0 0

1 1
( exp( ln(1 ( ) ( ) ) ( ) ( ) )

( ) ( )

T T

W T s q s ds T s g s ds 

 

      
    

1 1 1

1
0

1
( ) ( ) ) ( )

( )

T

T s g s ds Dom W



   
                                                                                   (14) 

Proof. Noting that ( )f t  is a positive and nondecreasing function, from (5) we obtain  

1 1

0 0

( ) 1 ( ) 1 ( ) ( )
1 ( ) ( ) ( ) ( ) ( ) [

( ) ( ) ( ) ( ) ( ) ( )

t tu t u s u s u s
t s g s q s ds t s g s

f t f s f s f s

 

 

      
    

1

0

1 ( )
( ) ( ) ] .

( ) ( )

s u
s h w d ds

f

 
  

 

  
   
  

                                                                                          (15)  

Let 1( ) ( ) / ( ).z t u t f t  From (14) we see  

1 1

1 1
0 0

1 1
( ) 1 ( ) ( ) ( ) ( ) ( )

( ) ( )

t t

z t t s q s ds t s g s z s ds 

 

     
    

1 1

1 1 1
0 0

1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ] , .

( ) ( )

t s

t s g s z s z s s h w z d ds t R    
 

 

    
                       (16) 

Define a function 2 ( )z t  by the right hand side of the inequality (21), i.e. 
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1 1

2 1
0 0

1 1
( ) 1 ( ) ( ) ( ) ( ) ( )

( ) ( )

t t

z t t s q s ds t s g s z s ds 

 

     
    

1

1 1
0

1
( ) ( ) ( ) ( )

( )

t

t s g s z s z s



 
 

1

1
0

1
( ) ( ) ( ( )) ]

( )

s

s h w z d ds   


 
   

1 1

1
0 0

1 1
1 ( ) ( ) ( ) ( ) ( )

( ) ( )

t t

T s q s ds t s g s z s ds 

 

     
    

1

1 1
0

1
( ) ( ) ( ) ( )

( )

t

t s g s z s z s



 
 

1

1
0

1
( ) ( ) ( ( )) ] , [0, ],

( )

s

s h w z d ds t T   


  
             (17) 

where 1[0, ]T T is chosen arbitrarily. We observe that 2 ( )z t  is a positive and nondecreasing function 

on [0,T]. From (16) and (17) we have 

1 2 2( ) ( ), ( ) ( ) ( ), [0, ],z t z t u t z t f t t T                                                                                         (18) 

1

2
0

1
(0) 1 ( ) ( ) .

( )

T

z T s q s ds



  
                                                                                              (19) 

Using Lemma 1, the property (8) ,the relation (18),and the definitions of fractional integral and 

derivative,we get 

1

2 1 1 1 1
0

1
( ) ( ) ( ) ( ) ( )[ ( ) ( ) ( ) ( ( )) ]

( )

t

tD z t g t z t g t z t z t t h w z d    


   
   

2 2 2 2( ) ( ) ( ) ( )[ ( ) ( ( ) ( ( )))]tg t z t g t z t z t I h t w z t    

2 3( ) ( )[1 ( )], [0, ],g t z t z t t T                                                                                            (20) 

where 

3 2 2( ) ( ) ( ( ) ( ( ))),tz t z t I h t w z t                                                                                       (21) 

which is a positive and nondecreasing function on [0,T]. From (19) and (21) we have 

2 3( ) ( ), [0, ],z t z t t T                                                                                                                   (22) 

1

3 2
0

1
(0) (0) 1 ( ) ( ) .

( )

t

z z T s q s ds



   
                                                                                   (23) 

Using (21) and (22), we have 

3 2 2( ) ( ) ( ) ( ( ))t tD z t D z t h t w z t   3 3 3( ) ( )[1 ( )] ( ) ( ( ))g t z t z t h t w z t    
2

3 3 3( ) ( ) ( ) ( ) ( ) ( ( )), [0, ].g t z t g t z t h t w z t t T                                                                  (24) 

By the formula (9), from (24) we obtain 

3
3 3 3

3 3

( ( ))1
[ln( ( ))] ( ) ( ) ( ) ( ) ( ) , [0, ].

( ) ( )
t t

w z t
D z t D z t g t g t z t h t t T

z t z t

                                       (25) 

Substituting t  with   in (25), making a fractional integral of order   for (25) with respect to   from 

0 to t  and using the properties (10), we obtain 

1 1

3 3 3
0 0

1 1
ln( ( )) ln( (0)) ( ) ( ) ( ) ( ) ( )

( ) ( )

t t

z t z t s g s ds t s g s z s ds 

 

     
    

1 3

0
3

( ( ))1
( ) ( ) ]

( ) ( )

t w z s
t s h s ds

z s





 
   

1 1

3 3
0 0

1 1
ln( (0)) ( ) ( ) ( ) ( ) ( )

( ) ( )

T t

z T s g s ds t s g s z s ds 

 

     
    

1 3

0
3

( ( ))1
( ) ( ) , [0, ].

( ) ( )

t w z s
t s h s ds t T

z s





  
                                                                               (26) 
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Let 4z  denote the right hand side of the inequality (31), then 4z  is a positive and nondecreasing 

function on [0,T ] with  

3 4( ) exp( ( )), [0, ],z t z t t T                                                                                                           (27) 

1

4 3
0

1
(0) ln( (0)) ( ) ( ) .

( )

T

z z T s g s ds



  
                                                                                   (28) 

Using (27) we have  

3
4 3

3

( ( ))
( ( )) ( ) ( ) ( )

( )
t

w z t
D z t g t z t h t

z t

   4
4

4

(exp( ( )))
( )exp( ( )) ( ) , [0, ].

exp( ( ))

w z t
g t z t h t t T

z t
                      (29) 

From (29) we get  

4
4 4 4

4

(exp( ( )))
( exp( ( ))) exp( ( )) ( ( )) ( ) ( ) , [0, ].

exp( ( ))
t t

w z t
D z t z t D z t g t h t t T

z t

                                     (30) 

Substituting t  with   in (30), making a fractional integral of order   for (30) with respect to  from 

0 to t  and using the properties (10), we obtain that 

1

4 4
0

1
exp( ( )) exp( (0)) ( ) ( )

( )

t

z t z t s g s ds



      
 

1 4

0
4

(exp( ( )))1
( ) ( )

( ) exp(2 ( ))

t w z s
t s h s ds

z s





 
   

1

4
0

1
exp( (0)) ( ) ( )

( )

T

z T s g s ds



    
   

1 4

0
4

(exp( ( )))1
( ) ( ) , [0, ].

( ) exp(2 ( ))

t w z s
t s h s ds t T

z s





  
                                                             (31) 

Let 5z  denote the right hand side of the inequality (31), then 5z  is a positive and nondecreasing 

function on [0, ]T  with  

4 5( ) ln( ( )), [0, ],z t z t t T                                                                                                             (32) 

1

5 4
0

1
(0) exp( (0)) ( ) ( ) .

( )

T

z z T s g s ds



    
                                                                        (33) 

Using (32) we have 

4
5

4

(exp( ( )))
( ( )) ( )

exp(2 ( ))
t

w z t
D z t h t

z t

  5

5

(exp( ln( ( ))))
( ) , [0, ].

exp( 2ln( ( )))

w z t
h t t T

z t

 
 

 
                                                     (34) 

Using the definition of W  and the rule (9), from (34) we get  

5( ( ( )))tD W z t 
5

5

5

exp( 2ln( ( )))
( ( )) ( ), [0, ].

exp( ln( ( )))
t

z t
D z t h t t T

w z t

 
 

 
                                                  (35) 

From (35) we have 

1

5 3 5
0

1
( ( )) ( (0)) ( ) ( ) , [0, ].

( )

t

W z t W z t s h s ds t T



   
                                                              (36) 

From (18), (22), (27), and (32), we get 

1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( ) ( ) exp( ( ) ( )) exp( ln( ( ))) ( ).u t z t f t z t f t z t f t z t f t z t f t                                   (37) 

From (19), (23), (28), and (33), we have 

1 1

5
0

1
( ) exp ln[ ( ( (0)) ( ) ( ) )] ( )

( )

t

u t W W z t s h s ds f t



  
     

 
  

1 1 1

0 0

1 1
exp ln[ ( ( exp( ln(1 ( ) ( ) ) ( ) ( ) )

( ) ( )

T T

W W T s q s ds T s g s ds 

 

  
        

 
   

1 1

0 0

1 1
( ) ( ) ) ( ) ( ) )] ( ), [0, ].

( ) ( )

T t

T s g s ds t s h s ds f t t T 

 

  
    
  

                                        (38) 
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Because  1[0, ]T T  is chosen arbitrarily, we obtain the required estimation (13).The proof is 

completed. 

Summary 

In this paper, the upper bound of the embedded unknown function in the inequality is estimated 

explicitly by adopting novel analytical techniques 

1 1 1

0 0

1 1
( ) exp ln[ ( ( exp( ln(1 ( ) ( ) ) ( ) ( ) )

( ) ( )

t t

u t W W T s q s ds T s g s ds 

 

  
        

 
 

 

1 1

1
0 0

1 1
( ) ( ) ) ( ) ( ) )] ( ), [0, ].

( ) ( )

t t

t s g s ds t s h s ds f t t T 
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