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Abstract. In this paper, we establish a class of iterated integral inequality, which includes a noncons
-tant term outside the integrals. The upper bound of the embedded unknown function in the inequality
is estimated explicitly by adopting novel analytical techniques, such as: change of variable,
amplification method, differential and integration. The derived result can be applied in the study of
qualitative properties of solutions of fractional integral equations.

Introduction

Gronwall-Bellman inequality [1, 2] can be stated as follows: If U and f are non-negative continuous
functions on an interval [a,b] satisfying

) <c+ [ f(u(s)ds,  tefab] L)

For some constant ¢>0, then

ut) <cexp([ f(s)ds), tefab]

In 2011, Abdeldaim et al. [3] studied a new integral inequality of Gronwall-Bellman-Pachpatte type
u(t) <u, + I;[g(s)u(s) +q(s)]ds + j; g(s)u(s)[u(s) + I:h(r)u(r)dr]ds. )

In 2014, EI-Owaidy, Abdeldaim, and El-Deeb[4] investigated a new retarded nonlinear integral
inequality

u® < fO+[ guE)ds+ [ h(s)u® (s)ds. 3)
In 2014, Zheng [5] discussed the inequality of the following form

1 t a-1 1 A a-1
u(t)<C v jo (t—s) g(s)u(s)ds+@ jo (A—s)“g(s)u(s)ds. (&)

During the past few years, some investigators have established a lot of useful and interesting integral
inequalities in order to achieve various goals; see [3-10] and the references cited therein.
In this paper, on the basis of [3, 4, 5], we discuss a class of nonlinear weakly singular integral
inequality

U= 1O+ s [ €9 0O +6(0) T + o= [, -9 9(6) F5)u(s)

1 s a-1
[u(s) e jo (s—7)**h(z)w(u(r))dz]ds (5)

Main result
Throughout this paper, let R, =[0,+o0).

Definition 1(see [7,8]). The modified Riemann-Liouville derivative of order ¢ is defined by the
following expression:
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D¢ f ()= T )dtf(—é) “(f(&)- f(0)dg,0<a<1

(FOM))“ " n<a<n+L,n>1

Definition 2(see [7, 8]). The Riemann-Liouville fractional integral of order & on the interval is
defined by

" 1
! f(t)_l“(lﬁto&) 0

(6)

1 t a-1
@ jo (t—s)* f(s)ds. (7)

In 2014, Zheng [5] proved the following property.

Lemma 1. Suppose that 0 <« <1, f is a continuous function, then
D (17 £ (1) = F(1). (8)
Some important properties for the modified Riemann-Liouville derivative and frational integral are
listed as follows (see [9, 10]):

D f[g(t)] = f[9(®ID g(t) = D¢ f[a(H]1(g'®)", ©)
12(DE £ (1) = T (1) -  (0), (10)
D{“C =0, where C is a constant. (11)

Define three functions by in (5)
uexp(—2In(-s))ds
W (u ,ueR..
()= -[ wexp(—In(-s)) = 12
Theorem 1.Suppose that, 9,h,qeC(R,,R,), w,, f eC(R,,R,) are nondecreasing functions
withw(u)/v<w(u/v), f(u)>0forall u>0,v>0. If u(t) satisfies (10), then

u(t)éexp{ In[-W (W (—exp(— In(1+— j (T —s)” 1q(s)ds)—— j (T —s)“g(s)ds)

1 t a-1 1 a-1
T [ &=s) g(s)ds)+@ [[t-9) h(s)ds)]} f(t),te[0,T,], (13)

where T, is the Iargest number such that

W (—exp(=In(L+—= j (T, —5)9(s)ds) -—— [ (T, )" *g (5)k)

[(a)-°
T [ (1, 5)"g(s)ds) € Dom(w ) (14)
Proof. Noting that f (t) is a positive and nondecreasing function, from (5) we obtain
u(t) 1 a1 (s) a1y U(S) LU(S)
f(t)s1+r( )jo(t s) g(s)f()+q(s)ds+—j =979 F )
"Fa j (s—7)* lh(r)w( (())jd 7]ds. (15)
Letz(t) = u(t)/ f (t). From (14) we see
z(t)<1+— j (t—s)” lq(s)ds+ j (t—s)""g(s)z(s)ds
j(t $)*'9(5)z,(9)[z (s)+ j (s—7)**h(r)w(z,(z))d]ds,t eR, . (16)

F( )7
Define a function z,(t) by the right hand S|de of the inequality (21), i.e.
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7,(t) = 1+— j (t- )"“1q(s)ds+— j (t—s)""g(s)z,(s)ds

r( )j (t—5)"9(s)z,(s)[z(s) + j (s—7) *h(x)W(z,(r))d7]ds

<1+ ﬁ j T - )“‘1q(s)ds+— j (t— s)""lg(s)z (s)ds

r( )_[ (t—s)" 1g(s)z (s)[z (s) + ) '[O (s—7)*" lh(z‘)W(Zl(T))dT]dS,t €[0,T], (17)

where T €[0,T,]is chosen arbitrarily. We observe that z,(t) is a positive and nondecreasing function
on [0,T]. From (16) and (17) we have
z,(t) <z,(t), u(t) <z, (t)f(t),t[0,T], (18)

2,(0) = 1+— J (T -s)“q(s)ds. (19)

Using Lemma 1 the property (8) ,the relation (18),and the definitions of fractional integral and
derivative,we get

02,0 = 900) + SOROM) + o= [, (=9 M(ew(z ()]
<92, + 9O Z,O[2,0) + 17 (W, O))]

=90z, O+, O]t [0, T], (20)
where
7,(t) = 2, () + 1" (h(t)w(z, (1)), (21)
which is a positive and nondecreasing function on [0, T]. From (19) and (21) we have
z,(t) < z,(t),t [0, T] (22)
2,(0) = 2,(0) =1+ —— [ (T =) *q(s)ds. (23)

['(a)”°
Using (21) and (22), we have

D{z,(t) = Dz, (t) + h(t)w(z, (1)) < 9(O)Z;([1+ 3 ()] + h(O)W(z, (1))

<90+ gOZO+hOWEO)t <O.T] @
By the formula (9), from (24) we obtain
D In(e, )= ;5 D0 < 60+ 0020 +h) * 75 D <07 25)

Substituting t with 7 in (25), making a fractional integral of order « for (25) with respectto = from
0 to t and using the properties (10), we obtain

In(z,(t)) < In(z, (0)) +L ) ‘( —s)“‘lg(s)ds+$ﬁ (t—)1g(s)z,(5)ds
a1 oy W(Z5(5))
"Fa [ t-5)*h(s) WD g

24(5)
<In(z, (0))+—I (T-9)" lg(s)ds+mj (t—s)""g(s)z,(s)ds
ek j (t—s)“h(s) W(Z((S» ds,t e[0,T1. (26)
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Let z, denote the right hand side of the inequality (31), then z, is a positive and nondecreasing
function on [0, T ] with

2,(t) <exp(z, ), t e [o T1, @27
2,(0) = In(z, (0»+— 9o 28)
Using (27) we have
DF (2, 0) = 90)2,1) + h®) W= < gtyexp(z, ) + het) WEPZMD 4 16 19 (29)
7,(t) exp(z,(t))
From (29) we get
DF (—exp(—2, (1)) = exp(—z, ())D (2, 1)) < g (t) + h(ty WERZO) ¢ o 77, (30)
exp(z, (1))

Substituting t with 7 in (30), making a fractional integral of order @ for (30) with respectto 7 from
0 to t and using the properties (10) we obtain that

—exp(~z, (t)) < —exp(~z (0))+— j (t-s)""g(s)ds +— j (t-s)“"h(s )%Z‘((:)))»ds
<—exp(-z, (0))+m j (T —s)“*g(s)ds
w(exp(z,(s))) ds,t <[0.T]. (31)

a—l
bt MO
Let z, denote the right hand side of the inequality (31), then z, is a positive and nondecreasing
function on [0,T] with
z,(t) <—In(—z(t)),t [0, T] (32)

z5(0)=—exp(—z4(0))+r( )j (T -s)“*g(s)ds. (33)

Using (32) we have
D“ (25 (t)) _ h(t) W(exp(z4 (t))) < h(t) W(eXp(— In(_zs (t)))) te [O,T]

exp(2z,(0) | exp(-2In(-z,(D) 34
Using the definition of W and the rule (9), from (34) we get
. _exp(=2In(=z;(1))) . .

DY W (500 = o T oy O <hO.te0 Tl (35)
From (35) we have

W (z5(t)) <W,(zg (0))+—j (t—s)*"*h(s)ds,t [0, T]. (36)
From (18), (22), (27), and (32) we get
u(t) =z,(t) f(t) <z,(t) £ (t) < z,(t) F (t) <exp(z,(t) f (1)) <exp(=In(-z5(1)))  (t). (37)

From (19), (23), (28), and (33), we have
u(t)<exp{—|n[—W W (zg (O))+—j (t—s)* 1h(s)ds)]}f(t)

sexp{ In[-W (W (—exp(— In(1+— j (T —s)“q(s)ds) - j (T —s)“g(s)ds)

ﬁ

"Fa j (T —s)* 1g(s)ds)+— j (t—s)” 1h(s)ds)]}f(t)te[0 T]. (38)
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Because T €[0,T,] is chosen arbitrarily, we obtain the required estimation (13).The proof is
completed.

Summary

In this paper, the upper bound of the embedded unknown function in the inequality is estimated
explicitly by adopting novel analytical techniques

u(t)Sexp{ In[-W (W (—exp(~ In(1+— j (T —s)“q(s)ds) - j (T —s)“g(s)ds)

ﬁ

Tk j (t—s)” 1g(s)ds)+— j (t— s)a-lh(s)ds)]}f(t) te[0,T,].
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