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Abstract 

This paper presents a distributed terminal (finite-time) backstepping consensus control for multi-agent Euler-
Lagrange systems. Terminal virtual error surfaces and virtual controls are proposed to guarantee the finite-time 
error consensus and formation convergence of a group of one-leader and multi-follower cooperative tracking Euler-
Lagrange system.Finite-time stability including infinite-time stability was proved by the finite-time Lyapunov 
candidate function. Simulation example shows the effectiveness of the proposed finite-time backstepping 
coordinated tracking controller. 

Keywords: Euler-Lagrange multi-agent system, backstepping control, Terminal virtual error surface. 

1. Introduction 

In recent years, there has been a great interest for 
researches of multi-agent systems, whose applications 
include spacecraft, mobile robots, sensor networks, etc. 
Interesting research directions are containment control, 
consensus, formation, and flocking control [1]. These 
problems focus on two cases, namely, the case that 
there does not exist a leader and the case where there 
exists a leader. The coordinate tracking problems to 
track a single leader have been investigate for followers 
with single-integrator, double-integrator, high-order 
dynamics, nonlinear or Euler-Lagrange dynamics [2-5]. 
Linear control theory and variable structure control 
methods in most researches are used. On the other hand,  
there  are few examples that use the backstepping 
control technique [6] for nonlinear or Euler-Lagrange 
multi-agent system. In this method,the problem of 
unmatched uncertainty and neglecting the efficient 

nonlinearities is overcomevia adopting step-by-
steprecursiveprocess. 

However,although a controller designed using this 
theorem guarantees the infinite-time stability of a 
closed-loop system, it has drawbacks such as a slow 
convergence rate and reduced robustness to uncertainty. 
On the other hand, systems with finite-time settling-
time design possess attractive features such as 
improved robustness and disturbance rejection 
properties [7],In this paper, terminal backstepping 
control based multi-agent consensus control for Euler-
Lagrange system with one-leader and multi-followers is 
developed. 

2. Background and Preliminaries 

2.1. Concept of Graph Theory 

In this paper, multi-agent robot Euler-Lagrange systems 
consisting of one leader and n followers are considered. 
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Graph theory is introduced to solve the coordination 
problem and model information exchange between 
agents. The communication topology is a directed 
graph, ={ , }G V E , where ={0,1,2,V ...,n} is the set of 
nodes, node i represents the  thi agent, E is the set of 
edges, and an edge in G is denoted by an ordered pair 
( , )i j . ( , )i j ∈E if and only if the thi agent can send 
information to thj agent directly, but not necessarily 
vice versa.A directed tree is a directed graph, where 
every node has exactly one parent except for the root, 
and the root has  directed paths to every other node. A 
directed graph , ={ , }G V E , has a directed spanning tree 
if and only if { , }V E has at least one node with a 
directed path to all other nodes. ( 1) ( 1)

,[ ] n n
i jA a R + × += ∈ is 

called the weighted adjacency matrix of G , 
where 0iia = and 0ija ≥ with 0ija > if there is an edge 
between the thi agent and thj . The Laplacian of the 
weighted graph can be defined as 

( 1) ( 1)n nL D A R + × += − ∈ ,where 
0 1( , ,..., )nD diag d d d= ( 1) ( 1)n nR + × +∈ is the degree matrix 

and
0

n
i ijj

d a
=

= ∑ for 0,1,...,i n= . For simplicity, it is 
assumed that 1ija = if ( , )i j ∈E and 0 otherwise. The 
connection weight between agent i and the leader is 
denoted by ib such that 1ib = if agent i connected to the 
leader and 0 otherwise. 

 

2.2.Multi-Agent Euler-Lagrange Systems 

The nonlinear dynamics of a group of 1n + fully 
actuated Euler-Lagrange systems are described as 
follows: 

( ) ( , ) ( )i i i i i i i i i di iM q q C q q q G q τ τ+ + + =   , 1,..., 1i n= + , 
(1) 

where ( )i iM q is a symmetric and positive definite 
inertia matrix; ( , )i i iC q q is a velocity-dependent 
centripetal and Coriolis forcesmatrix; ( )i iG q is a 
gravitational vector; diτ is a bounded unknown 
disturbance including unmodelled dynamics and 
exogenous disturbance; and iτ is an input torque. The 
simple dynamic equation can be expressed as the 
following state space model: 

,1 ,2i ix x= , 

,2 2 2( ) ( )i i i ix f x g x u= + ,   
 ,1i iy x= , 1,..., 1i n= + ,                                  (2) 

where ,1 ,2,i i i ix q x q= =  , 2 ,1 ,2[ , ]T
i ix x x= , 2( )if x =  

1
,2 ,2( )i i i iM C x x−− 1 1

,1( )i i i i diM G x M τ− −− − , 1
i ig M −= ,and 

i iu τ= . 
Assumption 1. 1

i di diM τ δ− ≤ , 1
,2( )C

i i i i ciK M C x δ−− ≤ , 

1
,1 ,1( )G

i i i i i giK x M G x δ−− ≤ , and ci gi di hiδ δ δ δ+ + ≤ ,  

where C
iK and G

iK are positive definite diagonal 
matrices and vectors, respectively, and 0hiδ > are 
upper bounds. 

3. Distributed Terminal backstepping 
Controller Design and Stability Analysis 

3.1.Controller Design 
The tracking errorsand virtual error surfaces are defined 
as follows: 

,1 01
( ) ( )n

i ij i j i ij
z a y y b y x

=
= − + −∑ ,                   (3) 

,1
,2 ,2 ,1 ,1 ,1( ) i

i i i i iz x c sig z γ α= + − , 1,...,i n= ,           (4) 
where 0x is the position of the leader, ,1iα are the virtual 

controls, ,1

,1 ,1 ,1( ) sgn( )i

i i isig z z z
γ

= , ,1 0ic > are 

constants, and ,1 ,1 ,1/i i iγ ξ ζ= , ,1iξ and ,1iζ are positive 
odd numbers, ,1 ,1 ,12i i iξ ζ ξ< < , ,1sgn( )iz is a sign 
function,. (3) can be changed for the formation control 
case as follows: 

,1 0 01
( ) ( )n

i ij i i j j i i ij
z a y y b y x

=
= + ∆ − − ∆ + + ∆ − − ∆∑  

(5) 
The time derivative of the first error surfaces ,1iz along 
(2) is 

,1
,1 ,2 ,1 ,1 ,1( )( ( ) )i

i i i i i i iz d b z c sig z γ α= + − +  

,2 01

n
ij i ij

a x b x
=

− −∑  .                                  (6) 

The Lyapunov function candidate ,1 ,1 ,1 / 2T
i i iV z z= to 

design the distributed virtual controller. Differentiating 
,1iV yields 

,1
,1 ,1 ,2 ,1 ,1 ,1[( )( ( ) )iT

i i i i i i i iV z d b z c sig z γ α= + − +  

,2 01
]n

ij i ij
a x b x

=
− −∑  .                                        (7) 

Choosing the distributed virtual control as  

( ),1 ,1 ,1 ,2 01
1 n

i i i ij i ii
i i

k z a x b x
d b

α
=

= − + +
+ ∑  ,       (8) 

(7) becomes 
,1 1

,1 ,1 ,1 ,1 ,1 ,1 ,1 ,2( ) ( )iT T
i i i i i i i i i i i iV k z z d b c z d b z z

γ +
= − − + + + ,(9) 

where ,1 0ik > are constants. Differentiating the 
Lyapunov function 

2
,2 ,1 ,2 ,2 / 2 / 2T

i i i i hi iV V z z δ η= + +  ,along (2) and (4), 
,1 1

,2 ,1 ,1 ,1 ,1 ,1 ,1 ,2( ) ( )iT T
i i i i i i i i i i i iV k z z d b c z d b z z

γ +
= − − + + +  

,1 1
,2 2 2 ,1 ,1 ,1 ,1 ,1[ ( ) ( ) ]iT

i i i i i i i i iz f x g x u c z z
γ

γ α
−

+ + + −   

ˆ /hi hi iδ δ η−  .                                         (10) 
Choosing the control inputs and adaptive laws as 

Published by Atlantis Press 
Copyright: the authors 

31



1
,2 ,2 ,1 ,2 ,1[ ( ) T C G

i i i i i i i i i i iu g k z d b z K x K x−= − − + + +

,1 ,21
,1 ,1 ,1 ,1 ,2 ,2( )i i

i i i i i ic z z c sig z
γ γγ

−
− −  

,2
,1

,2 ,2

ˆ
]hi i

i
i i

z
z
δ

α
κ

+ +
+

 ,                                          (11) 

( )2
,2 ,2 ,2

ˆ ˆ/ ( )hi i i i i i hiz zδ η κ η δ′= + − ,                 (12) 

where ,2 0ik > , 0iη >  , 0iη′ > , ,2 0,ic > and ,20.5 1iγ< <

are constants, ˆ
hi hi hiδ δ δ= − , ĥiδ are estimates of hiδ , 

we obtain the following expression: 
,1 ,2

2 1 1
,2 ,1 , , ,1 ,1 ,2 ,2

1
( ) i iT

i i i k i k i i i i i i
k

V k z z d b c z c z
γ γ+ +

=

≤ − − + −∑

,2
ˆ( / )T

hi i hi izδ δ η+ −   

,
22 2 1

,1 , , , ,
1 12

i kT i i
i i k i k i k i k

k k
k z z z

γη δ
β

+

= =

′
≤ − − −∑ ∑


2 / 2i iη δ′+

 
22

, , ,
1 2

T i i
i k i k i k

k
k z z

η δ

=

 ′
≤ − + 

 
∑

 , 122
2

i, , ,
1

( )
2

i k
T i i

k i k i k
k

z z
γη δ

β
+

=

′
− +∑


 

iµ+  

,2iaV≤ −
, ,1 1
2 2

,2

i k i k

ib V
γ γ+ +

− iµ+  ,                                      (13) 
where , ,1 ,2min[( ) , ],i k i i i id b c cβ = + ,1 ,2min[2 ,2 , ]i i ia k k η′= , 

,1 ,2min[2 ,2 , ]i i ib β β η′= ,
22 22

, 2 2
i i i i

i i i k iz
η δ η δ

µ η δ
 ′ ′

′= + + 
 


  

3.2. Finite-Time Stability Analysis 
 
((13) can be rewritten the following two forms: 

,2 ,2i iV aV≤ −
, ,

,

1 1
2 2

,21
2

,2

i k i k

i k

i
i

i

b V
V

γ γ

γ

µ+ +

+

 
 

− − 
 
 

 

,2ia V′= − ,2ib V γ ′′−  ,              (14) 

where ,2/i ia a Vµ′ = − ,
, ,1 1
2 2

,2/
i k i k

i ib b V
γ γ

µ
+ +

′ = − , and  

, 1
2

i kγ
γ

+
′ = .From (14), if a and b is selected such 

that ,2/i ia Vµ> and ,

2
1

,2/i k
ib Vγµ +> , respectively. Then, 

from the definition of finite-time stability [7], the 
equilibrium point 0x = is globally finite-time stable and 
the settling time st can be given by 

 
1

0( )1 ln
(1 )s

aV x b
t

a b

γ

γ

′− ′+
≤

′ ′−
.            (15) 

 

4. Simulation Example 

To validate the proposed control scheme, the following 
group of one leader indexed by 0 and four followers 

indexed by 1, 2, 3, and 4, respectively as shown in Fig. 
1. The strict feedback state equations of each agent are  
expressed as 

,1 ,2i ix x= , 

,2 ,2 ,1 ,2( )i i i i ix f x g u= + ,             (16) 
where ,2 [ ( ) ] /i i i di if G q Jτ= − + , 1 /i ig J= , i iu τ=

2 / 3i i iJ m L= , ( ) cosi i i i iG q m L q= ,the mass of the link 
1im kg= , and the length of link 0.25iL m= .Let the 

initial condition of four followers be 1,1 1,21, 0x x= = , 

2,1 2,21.2, 0x x= = , 3,1 3,22, 0x x= = , 4,1 1.2,x = − 4,2 0x = . The 
Laplacian can be written as 

0 0 0 0 0
0 3 1 1 1
0 0 1 1 0
1 0 1 1 0
1 0 0 0 0

L

 
 − − − 
 = −
 
− − 
 − 

, 3 41, 1b b= = . 

Simulation results are obtained with the 
time-varying control input to the leader being designed 
as 0 0,1sin( ) / (1 )tu x e−= − + , 0,1 / 2x π= , and 0,2 0x = .  

 
Fig. 1.   Directed graph of the manipulator group 

The error functions for the illustration of the formation) 
control are changed into (5), where 

1 1∆ = − , 2 2∆ = − , 3 3∆ = − , and 4 4∆ = − . Simulation 
results are presented in Fig. 2 (consensus control) and 
Fig. 3 (formation control), where the settling time of the 
proposed TBSC system is 31% faster than that of the 
BSC system. In addition, the steady state errors of the 
TBSC system are smaller compared to the BSC system. 
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Fig. 2.  Consensus control simulation results. (a) Tracking 
outputs of BSC system. (b) Tracking outputs of TBSC system.  
(c) 1,1z of BSC. (d) 1,1z of TBSC. 

 

 
 

Table 1.  Settling time (sec) of BSC and TBSC systems 

 
Consensus Formation 

BSC TBSC BSC TBSC 
1,1 0.01z ≤  2.03 s 0.77 s 2.23 s 0.83 s 
2,1 0.05z ≤  2.20 s 0.67 s 2.63 s 0.91 s 
3,1 0.01z ≤  2.07 s 0.76 s 2.83 s 0.86 s 
4,1 0.05z ≤  2.15 s 0.42 s 1.46 s 0.29 s 

Mean (%) 100% 32% 100% 31% 

5. Conclusion 

A terminal backstepping control scheme to guarantee 
the fast error convergence and small tracking error 
performance for a multi-agent Euler-Lagrange system 
is developed in this paper. A virtual finite-time error 
surface is defined to design a virtual control. The finite-
time convergence is proved by the finite-time stability 
analysis of Lyapunov function. Simulation for one-link 
manipulator agents confirms the theoretical proposal. 
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