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Abstract 

This paper proposes an improved intelligent vehicle localization method, which integrates the data from the 
odometry and the magnetic ruler(MR). The MR is used to detect the magnetic markers, which provides the absolute 
positioning reference. The data from odometry and the MR are used to localize the vehicle by using unscented 
Kalman filter. The data association (DA) method is adopted to validate the observations from the MR. The 
experiment results show that the method is a robust way. 
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1. Introduction 

Dead reckoning is a fundamental position estimation 
method, which is most widely used in the intelligent 
vehicle localization. However, intelligent vehicle cannot 
only rely on dead reckoning to determine their locations 
owing to the accumulative errors. The vehicle must be 
equipped with external sensors that obtain information 
from the environment to help the vehicle determine its 
location more accurately. Most researchers utilized GPS, 

ultrasonic1-3, optical flow sensor or machine vision 
based systems to provide the positioning information. 
The precision or reliability of results can be improved 
with several sensors4-7. However, the problems 
associated with using GPS for vehicle navigation are 
insufficient position accuracy and signal blockage due 
to buildings and hilly terrain. The sensing system based 
on an optical technique such as machine vision is easy 
susceptible to the influence of shade, snow, fog or other 
environmental conditions. 

International Journal of Computational Intelligence Systems, Vol.4, No. 3 (May, 2011).

Published by Atlantis Press 
    Copyright: the authors 
                    394

zegerkarssen
Texte tapé à la machine
Received: 10-03-2011
Accepted: 19-04-2011



C.X.Wang et al  

Position measurement using magnetic markers has been 
proved to be one promising technology for intelligent 
vehicle guidance and control8-9. The California Partners 
for Advanced Transit and Highways (PATH) program 
has deployed the magnetic marker system in 
conjunction with its experimental vehicles in a number 
of international and national demonstrations10. L. Conde 
Bento11, utilized magnetic markers to provide the 
absolute positioning reference for autonomous vehicles 
navigation in semi-structured outdoor environments. No 
physical contact is needed to produce measures. The 
magnetic marker reliability is independent of weather 
conditions or environmental conditions, and 
maintenance requirement is low since the system 
utilizes passive rather than active markers.  
To implement the functions of the integrated system and 
improve the location precision and the reliability of the 
vehicle localization system, it is necessary to adopt 
some sensor fusion algorithms, which can estimate and 
eliminate some sensor errors (such as wheel slippage or 
roughness of the ground). The best known algorithm to 
solve the problem of nonlinear filtering is extended 
Kalman filter (EKF) 12. The series approximations in the 
EKF algorithm can, however, lead to poor 
representations of the nonlinear functions and 
probability distributions of interest.  
The approach to implement sensor fusion for a highly 
nonlinear system is unscented Kalman filter (UKF), 
which can calculate the posterior covariance accurately 
to the 3rd order Taylor series expansion of the nonlinear 
state functions and measurement functions13. The UKF 
was used to fuse the data from the odometry with the 
data from the magnetic ruler and showed better results 
than the EKF14-15. However, in the localization system 
based on the magnetic marker, while the lateral offset 
from the magnetic ruler suffers from large disturbance 
or the magnetic ruler detects the fault marker, the large 
error will occur in position estimation. L. C. Bento 
adopted the data association method in the EKF 
framework for accepting/rejecting observations from the 
magnetic sensing system11. 
This paper integrates the data from the odometry and 
the magnetic ruler by using the UKF. An improved 
intelligent vehicle localization method is realized by 
adopting the data association method to judge the 
validity of the observations from the magnetic ruler. 
The localization of the intelligent vehicle based on the 
odometry and the magnetic ruler is presented in 

Sections 2.1 and 2.2. In Section 3, the sensor fusion 
process based on UKF is described in detail and the 
improved sensor fusion algorithm is realized by 
introducing the data association method in the UKF. 
The experimental results and conclusions are given in 
Section 4 and 5, respectively. 

2. Localization System 

Two different types of sensors are utilized in the 
intelligent vehicle localization system. Odometry is 
used for dead reckoning of the vehicle. Owing to the 
accumulative errors in the dead reckoning process, poor 
position estimation may occur. The magnetic ruler in 
the magnetic sensing system is used to detect the 
magnetic markers embedded under the road surface and 
provide the absolute positioning reference. Therefore, in 
order to accurately estimate the position of the vehicle, 
it is necessary to fuse the data from the two sensing 
systems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.1. Odometry 

The intelligent vehicle is equipped with one driving 
encoder and one steering encoder. While the vehicle 
runs along trajectory, the two encoders will measure the 
incremental distance and the steering angle of the 
steering wheel respectively. The estimation pose of the 
vehicle can be calculated from the data of the two 
encoders by using the dead reckoning method. The 
vehicle’s pose at time step kt is defined 
by [ ]Tkkkk yxX θ,,= . The coordinates ),( kk yx  specifies 
the vehicle’s position and the angle kθ  defines the 
vehicle’s orientation in the Cartesian coordinate system. 
The global coordinate frame ),( YX , shown in Fig.1, is 
stationary and the origin point O  is fixed at the initial 
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position of the vehicle. The vehicle local coordinate 
system is attached to the central point M  of the rear 
axle and its x axis aligns with the rear axis of the vehicle. 
Initially, the local coordinate frame coincides with the 
global coordinate frame.  
It is assumed that the intelligent vehicle moves along a  
circular trajectory from time kt to 1+kt . Its position 

),( 11 ++ kk yx and orientation 1+kθ at time 1+kt  is given by: 
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where kSΔ is the incremental distance and kθΔ  is the 
elementary rotation from state k  to 1+k . 
The value of the incremental distance kSΔ  can be got 
from the driving encoder and the steering angle kψ  of 
the virtual front wheel at time kt  can be calculated from 
the steering encoder. From Fig.1, the relationship 
between the steering angle kψ  of the virtual front wheel 
and the elementary rotation kθΔ  of the vehicle can be 
established as followed. 
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where L is the length from the rear axle to the front axle. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2. Magnetic Sensing System 

Magnetic sensing technology has been proven to one 
promising way for providing absolute positioning 
reference for intelligent vehicle localization. In the 
magnetic sensing system, there are two main subsystem , 

the magnetic marker and the magnetic ruler. The 
magnetic marker is made of NdFeB material in a 
cylindrical shape with a diameter of 2.5cm and a length 
of 2.5cm, which is embedded under the road surface 
along the predefined trajectory to provide the magnetic 
field signal. The magnetic ruler consists of thirteen 
Anisotropic Magnetoresistive (AMR) sensors with the 
length of 1 meter. The ruler is attached on the front 
bumper of the intelligent vehicle with a height of 18cm 
from the ground to the AMR sensor, shown in Fig.2. 
The magnetic ruler can measure the magnetic field of 
the magnetic marker as low as 85 μ Gauss. It is more 
sensitive relative to the sensing system based on Hall-
effect sensor. The lateral offset of the vehicle to the 
defined trajectory can be calculated from the 
measurement results of the magnetic ruler by using the 
peak mapping algorithm and the measurement accuracy 
of 1cm can be obtained. The price of the sensor in this 
sensing system is approximate 6$, and is low cost 
relative to the magnetic sensing system based on flux-
gate magnetometer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
When the vehicle is autonomously driven along the 
trajectory, the magnetic ruler will detect the magnetic 
markers defined in the global coordinate system and the 
relative position relationship between the vehicle and 
the magnetic marker can be established. The range-
bearing pair associated to a detected marker, is defined 
by ),( αd  in the local vehicle coordinate system, shown 
in Fig.3. Therefore, the following equations can be got: 
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Fig. 2.  Intelligent Vehicle with the Magnetic Ruler 
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where ),( mm yx  is the coordinates of the marker in the 
global coordinate system. 
According to (3), the nonlinear measurement model can 
be defined as following: 
 

kkk XhZ ν+= )(                       (4) 
 

where )( kXh  is the nonlinear vector function 
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and kν is the Gaussian sensor noise vector. 
The range-bearing pair ),( αd is the observation value 
and [ ]Tk dZ α,= is calculated from the measurement 
results of the magnetic ruler as follows: 
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where md is the distance from the central point of the 
known marker position ),( mm yx  to the central point M  
of the magnetic ruler. 1L  is the distance from the central 
point of the magnetic ruler to the central point M of the 
rear axle. 

3. Data Fusion of Odometry and Magnetic Ruler 

When the magnetic ruler detects the magnetic marker, 
the absolute positioning reference will be provided. A 
correction of the odometric estimation is performed by 
using an UKF algorithm and good results usually can be 
obtained. However, several external disturbance sources, 
such as earth magnetic filed and AC-generated magnetic 
field, will produce some noises. There are also some 
occasions when a single magnetic marker is missed or a 
fault marker is detected. In these cases, the large error 
will occur in position estimation. It is necessary to 
utilize the data association method to judge the validity 
of the observations during the state update phase in the 
UKF. 

3.1. System Architecture 

Fig.4 shows the architecture of the intelligent vehicle 
localization system. The prior position estimation of the 

vehicle can be calculated from odometry. The magnetic 
ruler can measure the lateral offset of the vehicle and 
provide the observations. The estimations from the 
odometry and the observations are compared by using 
the data association method. If the innovation 
distance kk

T
kk vSv 1−=τ  is more than the validation 

gatingσ , the observations should be rejected and keep 
the estimation 1|

ˆ
−kkX . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2. Unscented Kalman Filter 

The UKF is a recursive MMSE estimator that addresses 
some of the approximation issues of the EKF. In the 
UKF, the state distribution is represented by a Gaussian 
random variable (GRV), but it is specified using a 
minimal set of deterministically chosen sample points. 
These sample points completely capture the true mean 
and covariance of the GRV only with the 3rd or higher 
order errors16.  
The system model of the intelligent vehicle defined by 
the kinematic nonlinear difference equation with a state 
vector [ ]Tkkkk yxX θ,,= and an input vector [ ]Tkkk Su θΔΔ= ,  
can be written in the compact form: 

 
),,( 11 −−= kkkk wuXfX                      (7) 

 
where the random variable 1−kw  with covariance matrix 

wP represents the process noise.  
The nonlinear measurement model can be defined as: 
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Fig. 4.  Block Diagram of the Localization System 
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 where the random variable kv with covariance matrix 
vP  represents the measurement noise. The nonlinear 

function (.)h relates the state kX  to the measurement kZ . 
The process of the UKF is as follows: 
1) If the mean of the n -dimensional random 
variable kX is kkX |

ˆ and the covariance of kX is kkP | , 
kX can be approximated by 12 +n weighted samples or 

sigma points selected by the following algorithm: 
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where R∈κ , ( )

ikkPn /)( κ+ is the i -th column of the 
square root of matrix kkPn |)( κ+ , and iW is the weight that 
is associated with the i -th point. 
2) Given the set of samples generated by (9), each 
sigma point is instantiated through the process model(7) 
to yield a set of transformed samples 
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3) The predicted mean is computed as 
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4) The predicted covariance is computed as 
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5) The predicted observation is determined by 
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where 1|, −kkiγ are instantiations of projected sigma points 
for each variable and calculated by 

)1,( 1|,1|, −= −− kh kkikki χγ . 

6) The results calculated by (14) are used to estimated 
the vehicle’s pose as 
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and the cross correlation matrix is determined by 
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7) Finally the updated covariance is determined by 
 

T
kkykykkkk KPKPP −= −1|                      (18)  

3.3. Data Association 

Data association (DA) derives the correlation between a 
measurement and a landmark. It is crucial for the 
operation of any estimation process17. In this paper, the 
data association based on the nearest neighboour 
method is utilized to evaluate the consistency between 
the prediction range-bearing pair from the odometry and 
the measurement range-bearing pair from the magnetic 
sensing system.  
The nearest neighbour is a classical approach that 
determines the difference between the prediction results 
and the measurement results. When the magnetic ruler 
outputs a measurement result, only the result, which is 
close enough to the prediction result, is considered to be 
the possible candidate. The criterion of validation 
gateσ is given by: 
 

στ ≤= −
kk

T
kk vSv 1 , MjNi ,...,2,1;,...,2,1 ==     (19) 

 
where 1|

ˆ
−−= kkkk ZZv , and kS is the covariance of the 

innovation kv , kτ is the Mahalanobis distance18. 
Note that since kv is a Gaussian random variable, 
Mahalanobis distance kτ  is a random variable following 
the 2χ  distribution. Thus, the validation gate σ  is used 
to decide whether the measurement result kZ is a close 
enough match to the predicted result. From the 2χ  
distribution (Tab.1), we know 635.6≤kτ  with a 
probability of 0.99. Here we set 635.6=σ .  
In order to assure the confidence level of the 
observations from the magnetic ruler, before the vehicle 
pose is updated using the observations, the validity of 
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the measurement range-bearing pair should be validated 
by adopting the data association. If the Mahalanobis 
distance kτ is more than the validation gate, the 
measurement range-bearing pair from the magnetic 
sensing system should be rejected. 
 

 

4. Experimental Results 

In order to analyze the fusion performance of the 
proposed method based on UKF, the field experiments 
have been performed. The magnetic ruler is installed on 
the front bumper of the vehicle and the magnetic 
markers are embedded under the road surface along the 
defined trajectory. The magnetic ruler can measure the 
lateral offset of the vehicle with less than 1cm error. 
There are altogether twenty magnetic markers along the 
defined trajectory with the spacing of 2m. 
The experimental results indicate the implementation of 
the UKF method presented in Section 3.2. The initial 
true state of the system is )2/,0,0()0( piX = , and the 
initial covariance matrix of the initial state 
is ]101,0,0;0,101,0;0,0,101[ 222

0|0
−−− ×××=P . Owing to 3=n , 

κ is chosen to be zero in accordance with 3=+κn . 
Process noise is Gaussian white noise, and the process 
noise covariance matrix is 

[ ]344 1073.8,0,0;0,101,0;0,0,101 −−− ×××=wP . Measurement 
noise is Gaussian white noise, and the measurement 
noise covariance matrix of the magnetic ruler is 

[ ]44 101.3,0;0,101 −− ××=υP .  
Fig.5 shows the localization results without fault makers 
based on the UKF algorithm. Owing to the 
accumulative error in dead reckoning process, the 
localization results from the dead reckoning are not 
satisfactory for the precise vehicle localization. With the 
fusion of the odometry and the magnetic ruler by using 
the UKF algorithm, the localization errors have been 
reduced obviously. However, while the magnetic 
sensing system suffers from some large disturbances or 
the magnetic ruler detects the fault markers, the large 
error will occur in position estimation. As shown in Fig. 
6, there are two fault markers along the trajectory, the 
localization results are obviously destroyed due to the 
two fault markers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to realize the robust intelligent vehicle 
localization, the data association method is proposed to 
validate the observations from the magnetic ruler in the 
UKF update stage. When the innovation distance 
between the observation and the estimation is more than 
the validation gate, the observation should be rejected. 
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From Fig.7, there are two innovation distance values 
above the validation gate owing to the two fault markers. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Fig.8 and Fig.9 show the large localization errors by 
utilizing the UKF without data association method. 
There are two steep position change. When the 
magnetic ruler detects the fault marker, which is not 
belong to the position reference marker, the large steep 
position errors are produced due to the incorrect 
position mesurement reference from the fault marker. 
The UKF with data association method can validate the 
observations from the magnetic ruler and filter the 
mesurement reference from the fault marker. The 
experiment results in Fig.8 and Fig.9 show that the good 
localization results are obtained by utilizing the UKF 
with data association method.  

5. Conclusions 

The magnetic ruler in the magnetic sensing system can 
detect the magnetic marker embedded under the road 
surface and provide the absolute positioning reference 
for the mobile robot localization under all kinds of 

weather conditions or environmental conditions. The 
accumulative error in dead reckoning process can be 
obviously reduced by fusing the measurement results 
from the magnetic ruler. The performance of the robot 
localization system is improved by adopting the data 
association method in the UKF algorithm to judge the 
validity of the observations from the magnetic ruler. 
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