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Abstract

This paper proposes an enhanced Multi-objective Go with the Winners (MOGWW) algorithm to solve
multi-objective combinatorial optimization problems. The original MOGWW algorithm is equipped with
the well known Pareto Local Search (PLS) procedure. In order to assess the performance of the hy-
bridization, the non-dominated solutions it generates are compared with the ones generated by each of its
components. The algorithms are applied to benchmark instances of the bi-objective Quadratic Assign-
ment Problem. Experimental results show that the hybridized version outperforms both its components,
i.e. the original MOGWW algorithm and a PLS variant.

Keywords: Multi Objective Go With the Winners, Bi-objective QAP, Pareto Local Search, Greedy Non-
dominated Local Search.

1. Introduction

Most of the important real-world combinatorial
optimization problems are actually multi-objective
(MO) in nature, however, they are usually reduced to
a single-objective or to a family of single objective
problems. In this way the widely developed theory
and techniques for single objective optimization can
be used.1 Many of these single objective combina-
torial problems are hard to solve.2 Furthermore, it is
well-known that some combinatorial problems that
can be solved in polynomial time (i.e. belong to the
class P3), in their single-objective version, become
NP-harda when an extra objective or a constraint
is included.4 For these Multi-Objective COmbina-
torial (MOCO) problems, we need efficient methods

that can solve them while considering all their con-
flicting objectives at the same time.5,6,7

Many approaches have been proposed to deal
with MOCO problems, most of them are techniques
that can be classified as: local search, metaheuris-
tics, and in some cases a hybridization of both
of them. Preliminary results of a recently pro-
posed metaheuristic referred to as Multi-Objective
Go With the Winners (MOGWW) show that this
approach can be an interesting alternative for solv-
ing MOCO problems. The MOGWW is an algo-
rithm that uses an acceptance criterion based on the
component-wise ordering of the objective value vec-
tors. This algorithm is an extension of the Go With
the Winners which was introduced by Aldous and
Vazirani8 as an attempt to give a rigorous expla-

aNP-hard: This complexity class contains problems for which we do not know any polynomial time algorithm to solve them. 3
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nation of the behavior of some methods based on
a non crossover “survival of the fittest” paradigm.
The MOGWW variant is a population based algo-
rithm which needs only three parameters: the num-
ber of solutions to be analyzed at the same time, the
length “L” of a random walk the method needs to
perform, and the threshold set to define the fronts
the algorithm will get rid of at each iteration. Our
contribution here is to give the rationale behind the
MOGWW algorithm along with a proposal for an
improved hybrid version. The improvement con-
sists of adding a multi-objective local search algo-
rithm once the MOGWW converges. We analyze
the hybrid MOGWW over a set of instances of the
well-known Quadratic Assignment Problem (QAP)
with different input distributions, in particular over
instances with different correlation degrees between
their flow matrices. We do this because it is well-
known that the input’s distribution has a strong in-
fluence on the algorithm’s performance.9,10

The QAP is a very important combinatorial opti-
mization problem from a practical11,12 and theoreti-
cal point of view.3 In the context of location theory,
it is the problem of finding an optimal assignment
of a set of facilities to a set of locations with given
distances between locations and flows between all
pair of facilities. Since QAP belongs to the NP-hard
class,3 many alternatives such as Local Search (LS)
have been proposed to deal with it.11,12 Moreover,
the multi-objective version of this problem has re-
ceived much attention in the last years, mainly be-
cause it models many real problems and because it
is becoming a benchmark for new multi-objective
heuristics.13,9,14,15,10,16,17,18,19,20,21 It is worth noting
that most of these approaches report their best re-
sults when using a combination of heuristics, result-
ing in what is known as a “hybridization”, rather
than when using a single one.14,15,10,16,17,20,21

Since MOGWW has shown a good perfor-
mance,19 even when, in some cases, it could stop
prematurely. We modify this algorithm in order to
generate a set of solutions that will allow the algo-
rithm to continue the search. Then, we propose to
improve the MOGWW, adding a multi-objective lo-
cal search. It is worth noting that our goal with the
hybridization of a MO algorithm is two-fold: first,

as in any standard hybridization with local search
we want to locally improve solution’s quality; sec-
ond, we use such mechanism to help the algorithm
start anew. We study the algorithm’s performance
over the bi-objective version of the QAP (bQAP).
The problem instances come from a generator pro-
posed by Knowles and Corne,9 for which we have
one distance matrix and two flow matrices. We com-
pare the results obtained by the proposed hybridiza-
tion with each of its components and with the ones
belonging to a reference set for this problem.10

The remainder of the paper is organized as fol-
lows. Section 2 presents some basic definitions
about multi-objective problems. Section 3 states
the bi-objective QAP and describes previous results.
Section 4 explains the MOGWW algorithm, while
Section 5 describes its hybrid version. After that,
Section 6 shows the experimental setup and results.
Finally, Section 7 states the conclusions of this work
and some ideas for future research.

2. Multi-objective optimization and
performance measures

Most of the important real-world problems are
multi-objective (MO) in nature. To deal with them
many heuristics have been proposed mainly as ex-
tensions of their single-objective counterparts.6,7

Although the single objective versions have proven
to work well in practice, it is not easy to infer
that their MO extensions will also perform well.
This motivates the analysis of multi-objective algo-
rithms behavior along with the characterization of
MO problems difficulty. Assuming, without loss of
generality, a minimization problem, MO problems
can be formulated as22,1,5:

minimize{z1 = f1(x), ...,zJ = fJ(x)} (1)

where J is the number of objective functions, a so-
lution x = [x1, ...,xl] ∈ X is a vector of discrete vari-
ables and X is the set of feasible solutions. The im-
age of a solution in the decision space is a point,
z = [z1, ...,zJ] ∈ Z. Under this setting, there is not
a single optimal solution to MO problems but many

Published by Atlantis Press 
       Copyright: the authors 
                     531



An Enhanced MOGWW for the bi-objective QAP

“non-dominated” solutions, known as Pareto opti-
mal solutions.22,1,5 If we assume again minimization
problems, the definition of dominance can be stated
as follows22,1,5:

A point z1 ∈ Z dominates z2 ∈ Z, denoted as
z1 � z2, if ∀ jz1

j 6 z2
j , and there is at least one j for

which z1
j < z2

j . Solution x1 dominates x2, x1 � x2, if
the image of x1 dominates the image of x2. A so-
lution x ∈ X′ ⊆ X is non-dominated if there is no
x′ ∈ X′ such that x′ � x. A set of solutions ND⊆ X′
is referred to as a non-dominated set if each x∈ND
is non-dominated. If X′ is the set of all feasible so-
lutions then ND is known as Pareto optimal set. In
this case, the image of ND is defined as the Pareto
front.

Another important concept we will refer to is the
Pareto Local Optima, which is adapted from Miet-
tinen1 to deal with combinatorial problems: a fea-
sible solution x∗ ∈ X is locally Pareto Optimal if,
given a neighborhood N(x∗), x∗ is Pareto optimal in
X∩N(x∗). Similar definitions can be found else-
where.23,24

When comparing two or more sets of non-
dominated solutions, we need to use performance
measures that can give us information about the
dominance relations between those sets. Many alter-
natives have been proposed (see the work of Zitzler
et al.25 and references therein), however, the prob-
lem of deciding which non-dominated set is better
is itself an MO problem. We are going to use two
of the main performance measures, which are de-
scribed as follows:

Coverage.26,25 Let A and B be two sets. The
function C maps the ordered pair (A,B) to the inter-
val [0,1]:

C(A,B) :=
|{b ∈ B;∃a ∈ A : a� b}|

|B|
. (2)

A value C(A,B) = 1 means that all points in
B are dominated by or equal to points in A, while
C(A,B) = 0 means that none of the points in B
are covered by the set A. A dominates B when
C(A,B) = 1 and C(B,A) = 0. We will refer to this
measure in terms of the percentage of coverage be-
tween the sets, i.e. %cov(A,B) = C(A,B)∗100%.

Binary ε-indicator.25 Gives a factor by which
a non-dominated set of objective value vectors is
worse than another, with respect to all objectives,
and is calculated, for a bi-objective problem, as

Iε(A,B) :=
max

b ∈ B
min

a ∈ A max
(

a1

b1
,
a2

b2

)
, (3)

where ai and bi are the ith objective function val-
ues of solutions a ∈ A and b ∈ B, respectively. If
Iε(A,B) > 1 and Iε(B,A) 6 1, then we say that the
set B completely dominates A. This measure indi-
cates the minimum ε such that for any solution in B
there is at least one solution in A that is not worse
by a factor of ε in all objectives. This measure can
be computed in time O(n|A||B|). When compar-
ing more than one pair of sets, we will measure the
percentage of times when there is a complete domi-
nance in the comparison. We will refer to this mea-
sure as d1% if comparing A with B, and d2% if com-
paring B with A.

These measures will be used to compare our
results with the ones generated by the original
MOGWW, the implemented PLS variant, and with
the best known up-to-date solutions.

3. The Quadratic Assignment Problem

The Quadratic Assignment Problem, originally pro-
posed by Koopmans et al.,27 is a combinatorial op-
timization problem and can be described, in the con-
text of location theory, as the problem of assigning
a set of facilities to a set of locations with given
distances between locations and flows between all
pair of facilities. The goal is to find the best assign-
ment of facilities to locations such that the sum of
the product between flows and distances is minimal.
Many practical problems can be formulated as QAP
which can be stated as follows:

Given N facilities, N locations, and two N x N
matrices D and E for distances and flows, respec-
tively, then the QAP can be stated as9:

minimize C(π) =
N

∑
i=1

N

∑
j=1

ei jdπiπ j , (4)
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where ei j is the flow between facilities i and j, πi
gives the location of facility i in permutation π ∈Π,
where Π is the set of all permutations of n numbers,
dπiπ j is the distance between locations πi and π j, and
ei jdπiπ j is the cost contribution of assigning facility i
to location πi and facility j to location π j.

We consider the multi-objective version of this
problem introduced by Knowles and Corne,9 such
that we have one distance matrix D and more than
one flow matrices E. This version can be stated as
follows:

minimize C(π) = {C1(π),C2(π), · · · ,Cm(π)} (5)

where

Ck(π) =
N

∑
i=1

N

∑
j=1

ek
i jdπiπ j ,k ∈ {1, · · · ,m}, (6)

ek
i j is the kth flow from facility i to facility j, and

minimize means to obtain all the Pareto optimal so-
lutions. This is an example of a MOCO problem,5

here the set of feasible solutions X is given by a per-
mutation space Π.

3.1. Related work

Some hybrid metaheuristics have been proposed re-
cently to deal with the single-objective version of
QAP.28,29,30,31,32 Also, QAP instances are used as
benchmark to analyze the behavior and performance
impact of some specific mechanisms.29,33 A Coop-
erative Parallel Tabu Search is proposed by James
et al.28 to deal with QAP, using a set of instances
from the well known set of benchmark instances
QAPLIBb. Their conclusions give some guidelines
for a better exploitation of parallel mechanism to ob-
tain competitive alternatives when dealing with this
problem. The same set of instances is used by the
authors in a different work28 to analyze the impact
of a Multi-Start Tabu Search mechanism in terms of
diversification and exploitation. The main outcome

is that it is more convenient to apply strategic diver-
sification than relying on randomization. Although
the ideas of hybridization are central to most of these
works, all of them deal with the single-objective ver-
sion of the QAP. In the following the most relevant
works related to the multi-objective version are pre-
sented.

A procedure which allows to generate a wide
range of instances with different distributions, as
well as instances with different degrees of corre-
lation between the flow matricesc is proposed by
Knowles and Corne.9 They conjecture that the be-
havior of different search strategies depends on the
parameters used for generating the instances.

A set of bi-objective instances (bQAP)d with dif-
ferent correlations in the flow matrices using the
generator from Knowles and Corne9 is generated by
Paquete and Stützle.10 The performance of two dif-
ferent types of stochastic local search (SLS) algo-
rithms, represented by PLS34 and TPLS35, for this
set of instances are studied. The non—dominated
solutions from 500 runs of the multi-objective ver-
sion of RoTS (W-RoTS)11 are used as a reference
set. This algorithm is one of the best performing
algorithms for single-objective QAP,11,36 however
the multi-objective version is computationally ex-
pensive.10 It is concluded by the authors that, the
correlation between the flow matrices of the bQAP
strongly affects the performance of SLS algorithms.
In general, PLS performs better for lower correlation
between the flow matrices, however the computation
time increases considerably, although not as much as
it does for W-RoTS. TPLS also performs better with
lower correlation between the flow matrices, and
its computation time does not increase as much as
with PLS, however the solutions given by TPLS are
worse, in most instances, than those given by PLS.
Table 1 shows the results obtained by Paquete and
Stützle10 using PLS. Every run of their algorithm
is compared with a reference non-dominated front,
the one obtained by W-RoTs,10 and the mean Bi-
nary ε-indicator values and the percentage of times
that their fronts were completely dominated (%dom)

bhttp://www.opt.math.tu-graz.ac.at/qaplib/
chttp://dbkgroup.org/knowles/mQAP/
dhttp://eden.dei.uc.pt/p̃aquete/qap/
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are reported.
Variants of a multi-objective ant colony opti-

mization (MO-ACO) algorithm and of the Strength
Pareto Evolutionary Algorithm (SPEA2) hybridized
with an iterative improvement and the Robust Tabu
Search (RoTS) algorithm are presented by López-
Ibáñez et al.17 Their experimental results show the

usefulness of the hybrid algorithms if the available
computation time is not too limited. The SPEA2 hy-
bridized with very short tabu search runs is identi-
fied as the most promising variant. Moreover, it was
also found that the algorithms’ performance depends
strongly on the instance structure, being SPEA2 the
one that showed a higher level of robustness.

Table 1: W-RoTS dominance over PLS %dom, and binary indicators: ε1 = Iε(PLS,W −RoT S), ε2 = Iε(W −
RoT S,PLS) average running time in seconds avgt(s), and, average number of solutions in the output front avgn.

ρ N
PLS

%dom ε1 ε2 avgt(s) avgn
0.75 25 100 1.043 0.966 0.0 2.8

50 100 1.031 0.975 0.0 4.2
75 100 1.023 0.982 0.1 5.4

0.50 25 100 1.041 0.982 0.0 11.0
50 100 1.029 0.986 0.1 22.5
75 100 1.021 0.992 0.6 33.1

0.25 25 100 1.038 0.990 0.0 25.6
50 100 1.030 0.992 0.3 55.7
75 100 1.020 0.995 1.5 89.2

0.00 25 100 1.047 0.992 0.0 41.1
50 98 1.028 0.995 0.5 101.5
75 91 1.021 0.997 2.8 158.8

−0.25 25 92 1.037 0.996 0.1 69.5
50 85 1.026 0.998 1.0 160.4
75 82 1.020 0.999 5.7 273.1

−0.50 25 68 1.036 0.999 0.1 112.2
50 42 1.030 1.000 2.5 283.3
75 18 1.021 1.001 16.0 490.3

−0.75 25 0 1.034 1.005 0.4 286.6
50 0 1.026 1.005 11.4 707.9
75 0 1.018 1.004 79.2 1195.2

Two multi-objective fast messy genetic algo-
rithms, MOMGA-II and MOMGA-IIa, to solve
an application problem that can be modeled as
the multi-objective quadratic assignment problem
(mQAP) are introduced by Day and Lamont.15 A set
of twenty three instances from Knowles and Corne9

of three different sizes 10, 20, and, 30, respectively,
with two and three objectives are used. A compari-
son of the results from MOMGA-II and MOMGA-
IIa with the ones obtained by a local search,9 and
an exhaustive search approach is presented. The
outcome was that MOMGA-IIa finds all Pareto op-
timal points for problem instances with sizes less
than 20. Moreover, it is also concluded that the rea-
son for the dominance of the MOMGA-IIa over the
MOMGA-II has to do with the generation and se-

lection mechanisms that allow better multi-objective
building blocks to be found.

A variant of the GRASP metaheuristic to solve
the mQAP is proposed by Li and Landa-Silva,37 the
method’s performance on 18 benchmark instances9

is analyzed. The results are compared with the ones
obtained by other state-of-the-art approaches like
NSGA-II, SPEA2, and MOEA/D.38 The main out-
come is that their result are competitive with the
ones produced by MOEA/D and outperforms those
produced by NSGA-II and SPEA2.

There are two previous works39,19 closely related
to this one. The preliminary ideas for the MO ver-
sion of the GWW (MOGWW) and its application
to the bi-objective permutation flowshop scheduling
problem are given by Brizuela and Gutiérrez.39 On
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the other hand, the influence of flow matrices cor-
relation on the performance of the MOGWW, for
the set of QAP’s instances proposed by Paquete and
Stützle,10 is analyzed in Gutiérrez and Brizuela.19

The algorithm performance as a function of two de-
sign parameters: the random walk length (L) and the
number of solutions (P) is studied. The main out-
come of these studies is that for instances with posi-
tive flow matrices correlation the parameter control-
ling the algorithm performance is the random walk
length L, while the main parameter for negative cor-
relation instances is the number of solutions P. It
has been shown that the algorithm shows the disad-
vantage of stopping when all solutions become non-
dominated even though when these solutions con-
tain, in their neighborhoods, better solutions. There-
fore, to overcome this situation a combination of
the MOGWW algorithm with a multi-objective lo-
cal search, like PLS,34 in order to obtain a better
meta-heuristic to deal with MOCO problems like the
bQAP is proposed.

The objective here is two fold: first, to better ex-
plain the rationale behind MOGWW, and second, to
analyze whether the MOGWW can be improved by
adding a local search procedure. In this case we are
strict in the term “improve” which means equal so-
lution’s quality at lower computation cost or better
quality at the same computation cost.

It is worth noting that there have been many pro-
posals to hybridize multi-objective algorithms with
local searches, their main objective has been to reach
a local optimum to improve the solution’s quality.
For instance Jaszkiewicz40 hybridizes an evolution-
ary algorithm with a Local Search. The main goal
is to improve the quality of offspring solutions after
crossover. Another interesting work41 uses differ-
ent neighborhood sizes according to the solutions’
quality. A more advanced hybridization for the bi-
objective QAP is given by López-Ibáñez et al.,17

their SPEA2 hybridized with short taboo search runs
obtains one of the most competitive results for this
problem. As in the previous case, the aim is to im-
prove the quality of solutions. In our case the main
goal is also to get better solutions, however, the lo-
cal search has also another important goal which is
to allow the algorithm to continue for one or more

iterations. It does this by getting solutions that are
part of different non-dominated fronts, i.e. solutions
with different Pareto ranks, which is a condition that
forces the algorithm to iterate.

The next section gives a detailed explanation
of the MOGWW algorithm and describes the pro-
posed hybridization with a variant of the Pareto
Local Search algorithm proposed by Paquete and
Stützle.10

4. The Multi-Objective Go With the Winners
algorithm (MOGWW)

The MOGWW algorithm was proposed as a multi-
objective version of the GWW,8,42 which was origi-
nally designed to search graphs with a tree structure.
Dimitriou and Impagliazzo42 introduced a variant of
this algorithm that can be used to search graphs that
are not trees. With the same philosophy Brizuela
and Gutiérrez39 applied such strategy to design a
MO version of the algorithm. However, the ratio-
nale behind the algorithm was not completely clar-
ified. Here we deepen in the understanding of this
algorithm clarifying and simplifying its description.

Algorithm 1. MOGWW.
Input: A set of P initial solutions. A number L of
steps for the random walk. A set of k fronts to be
eliminated at each step.
Output: A non-dominated set of P solutions.

Step 1. Initialization. Generate P
random solutions. Classify the solu-
tions according to their dominance re-
lations, this step resembles to the non-
dominated sorting procedure proposed
in NSGA-II.43

Step 2. Until all solutions are non-
dominated do:

Step 3. Restriction. Decrease the
threshold by eliminating the k selected
fronts

Step 4. Redistribution. Let q be the
number of solutions deleted in the pre-
vious step. Make q copies of randomly
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selected members of the remaining pop-
ulation to replace the solutions deleted
in the previous step.

Step 5. Randomization. For every du-
plicate made in the previous step, ex-
ecute the following random walk with
non-dominated threshold for L steps;
select a random neighbor; if the neigh-
bor is not dominated by any solution in
the worst remaining front then move to
it, otherwise stay at the current solution.
Note that selecting a neighbor but not
moving to it still counts as one of the L
steps in the random walk.

Step 6. Reclassify the solutions accord-
ing to their dominance relations. Con-
tinue to the next stage (Step 2).

This algorithm works with the same principles
as its single-objective version introduced by Dim-
itriou and Impagliazzo42 does. The main difference
with the single-objective version is the introduction
of a proper threshold condition (Step 3) and a corre-
sponding non-dominated random walk (Step 5).

The main idea regarding the threshold is as fol-
lows. At each stage the solutions are classified in
non-dominated fronts, the non-dominated front is
assigned the index 1, and the poorest front is as-
signed the highest index. The simplest threshold
would be to select the poorest front and delete all so-
lutions which are in it and replace them with copies
of solutions in fronts with lower indices (i.e. bet-
ter ones). An option to generalize, illustrated in
Step 3 of Algorithm 1, is to do the replacement of
the k selected fronts with copies of solutions com-
ing from the remaining fronts. Another possible ap-
proach, not presented in Algorithm 1, is to obtain
such copies only from a particular set of the remain-
ing fronts (e.g. coming only from the j best fronts).
The original GWW algorithm decreases the thresh-
old in one unit steps, this is not possible in many
problems, therefore we propose instead to select k
fronts to be eliminated.

Each of the generated duplicates is the starting
point of a length L random walk (steps), at each step

the selected neighbor is compared with solutions in
the current worst front among the non deleted ones.
If the neighbor is not dominated by any solution
in the worst front then this become the new solu-
tion, otherwise stays at the current solution. In this
way it is ensured that the new solutions will be at
least as good as the solutions in the current worst
front and better than solutions in any of the deleted
fronts, in terms of dominance relations. The random
walk is the mechanism that allows the algorithm to
keep a diverse set of solutionse, which is a highly
desirable property for an algorithm when dealing
with MO problems.7 The random walk is a sampling
mechanism and the main exploration power for the
MOGWW.

Points against the algorithm have to do with the
length L of the random walk that can make the algo-
rithm to be computationally expensive in problems
where the steady state of the random walk can only
be reached after a very long walk. Another impor-
tant problem has to do with its stopping criterion,
i.e. it stops when all solutions are non-dominated.
The problem with this is that when we deal with big
instances, it may be the case that even initial random
solutions are non-dominated among each other. This
will force the algorithm to stop in the first step pro-
ducing low quality solutions. Notice that this can
happen even when these non-dominated solutions
are not locally Pareto optimal. This happens mainly
because the non-dominance comparisons consider
only the current solutions and not their neighbors,
then the set of solutions in the last non-dominated
front may have better solutions in their neighbor-
hoods that will not be considered by the algorithm.
That is why we propose to add a local search which
will help to produce more than one non-dominated
fronts, allowing the algorithm to continue the search.

5. Hybrid MOGWW

The MOGWW algorithm iterates until the set of
P solutions form a non-dominated set (Step 2,
Algorithm 1), without guaranteing that this non-
dominated set is, at least, a locally Pareto optimal
set. The idea is to add a multi-objective local search

eNotice, however, that this mechanism is not as specialized as the ones used in some evolutionary algorithms like NSGA-II 43 or SPEA2 44
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that will help the algorithm to improve the quality of
its solutions and to allow it to continue the search.
Such procedure will search in the neighborhoods of
non-dominated solutions for better ones. This may
lead to a new composition of the set of solutions re-
garding their rankings, i.e. to the generation of so-
lutions of different levels of dominance which will
allow the algorithm to continue the search. That is,
every time the algorithm reaches a non dominated
front (Step 2, Algorithm 1) a local search procedure
helps to restart the MOGWW main procedure. The
new algorithm will stop if after applying the multi-
objective local search it is the case that all solutions
are non-dominated. That is, until all the solutions
find themselves in a Pareto Local optima. We pro-
pose to use a local search based on the Pareto Local
Search (PLS) proposed by Paquete et al.34 once the
MOGWW stops.

PLS is an extension of local search algorithms
for single objective problems.34 The main modifica-
tions from the single objective to the multi-objective
case concern the acceptance criterion of new solu-
tions in the local search. The original PLS algorithm
is described as follows.

Algorithm 2. PLS.34

Input: An initial solution s.
Output: A set F of non-dominated solutions.

Step 1. Set F = {s}, and set the visit−
bit of s to f alse;

Step 2. Randomly select a solution s
of F whose visit − bit is set to f alse,
according to a uniform distribution and
evaluate all neighboring solutions s′ ∈
N(s);

Step 3. If a s′ encountered in the neigh-
borhood of s is non-dominated by any
solution in F , it is added to F with its
visit−bit set to f alse;

Step 4. Once all neighboring solutions
of s are examined, the visit−bit of s is
set to true;

Step 5. If solutions exist with the
visit − bit set to f alse, repeat Step 2,
otherwise output F .

We modify PLS in order to use it with the
MOGWW once the latter stops. Since the
MOGWW ends when all solutions are nondomi-
nated and we have P such solutions, then the set F
is initialized with P solutions instead of one. The
algorithm is also restricted to a final set of P solu-
tions. Once a neighbor s′ of s that is non dominated
by F is found, we search for a solution in F that is
dominated by s′ in order to be replaced. If such a
solution is not found, the neighbor is not accepted.
Each time we finish exploring a solution’s neighbor-
hood, its visit − bit is set to true, and every time a
new neighbor replaces a solution its visit−bit is set
to f alse. These modifications allow us to keep a
fix number of solutions as output, however this can
cause the solutions to gather around the neighbor-
hoods of the first initial solutions. We will refer to
this variant of PLS as mPLS and its pseudocode is
given as follows.

Algorithm 3. mPLS.
Input: An initial set S of P nondominated solutions
produced by the MOGWW.
Output: A set F of P solutions.

Step 1. Set F = S, and set the visit−bit
of each s ∈ F to f alse;

Step 2. Randomly select a solution s
of F whose visit − bit is set to f alse,
according to a uniform distribution and
evaluate a solution s′ ∈ N(s);

Step 3. If s′ is nondominated by any so-
lution in F , and s′ dominates a solution
s′′ ∈ F then replace s′′ by s′ and set the
visit− bit of s′ to false. If such a solu-
tion is not found then s′ is not accepted
and another solution of N(s) is selected;

Step 4. Once all neighboring solutions
of s are examined, and a dominated so-
lution s′′ is not found then the visit−bit
of s is set to true;

Step 5. If solutions exist with the
visit − bit set to f alse, repeat Step 2,
otherwise output F .

With this variant the number of solutions is fixed
and will not grow as in PLS. Notice, however, that
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this modified version of PLS may end with a set
of solutions belonging to different non-dominated
fronts. At the end the non-dominated property of
the solutions will be guaranteed by the MOGWW.
The whole procedure that we name HyMOGWW is
described by Algorithm 4.

Algorithm 4. HyMOGWW.
Input: A set of P initial solutions. A number L of
steps for the random walk. A set of k fronts to be
eliminated at each step.
Output: A non-dominated set of P solutions.

Step 1. Initialization. Generate P
random solutions. Classify the solu-
tions according to their dominance re-
lations, this step resembles to the non-
dominated sorting procedure proposed
in NSGA-II.43

Step 2. Until all solutions are non-
dominated do:

Step 3. Restriction. Decrease the
threshold by eliminating the k selected
fronts

Step 4. Redistribution. Let q be the
number of solutions deleted in the pre-
vious step. Make q copies of randomly
selected members of the remaining pop-
ulation to replace the solutions deleted
in the previous step.

Step 5. Randomization. For every du-
plicate made in the previous step, ex-
ecute the following random walk with
non-dominated threshold for L steps;
select a random neighbor; if the neigh-
bor is not dominated by any solution in
the worst remaining front then move to
it, otherwise stay at the current solution.
Note that selecting a neighbor but not
moving to it still counts as one of the L
steps in the random walk.

Step 6. Reclassify the solutions ac-
cording to their dominance relations. If
there is only one non-dominated front
apply mPLS (Algorithm 3) to the set of
solutions, take the output from mPLS as

the new set of solutions and reclassify
them according to their dominance re-
lations. Continue to the next stage (Step
2).

6. Experimental setup and results

The set of instances proposed by Paquete and
Stützle10 is used to test the hybridization of
MOGWW algorithm using three different values
N,2N, and 4N for both parameters: P and L. Then,
a total of nine different combinations are used, and
50 runs are performed for each combination. The
MOGWW is tuned to delete all solutions in every
but the best non-dominated front at each iteration
and the deleted solutions are replaced with perturbed
copies of solutions in the best non-dominated front
(Step 5, Algorithm 4). That is, we do not need to
actually perform a non-dominated sorting, we need
just to compute the non-dominated set of solutions
at each iteration. The neighborhood for this particu-
lar problem is the one defined by the swap operator
described in Paquete and Stützle,10 which defines as
a neighbor the solution given by swapping the loca-
tion assignment of two facilities.

6.1. Hybrid MOGWW Analysis

Once the resulting fronts for HyMOGWW are ob-
tained, we compare them with those generated by
the original MOGWW, in terms of diversity, in or-
der to analyze the impact of the hybridization over
this property. We use the Spread43 which is a diver-
sity measure of the extent of spread achieved among
the obtained solutions. For the most widely and
uniformly spreadout set of non-dominated solutions,
with respect to a reference set, this metric would take
a value of zero. The spread for each resulting non-
dominated front of each of the 50 runs and its av-
erage are calculated. In case of MOGWW and Hy-
MOGWW we used the fronts obtained when using
P = L for N,2N,4N and all instance sizes. The ref-
erence set is the front generated by W-RoTS.10

Table 2 shows the diversity results obtained for
the fronts generated by MOGWW and HyMOGWW
algorithms. We can see that MOGWW fronts ob-
tained a better (lower) value of Spread for almost
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all instance sizes and parameters’ values. The
differences, shown here as the ratio between Hy-
MOGWW and MOGWW spread values, are closer
to one for instances with strong positive correlation,
and increase as we go from correlation 0.75 to 0.0
and negative values, finishing with a small decrease
for a correlation of −0.75. We can see that the ra-
tios range from 0.99, meaning that HyMOGWW ob-

tained a slightly better value, up to 1.37 for instance
size 75, correlation−0.25, and P = L = 2N. This di-
versity results tell us that, as expected, the solutions
generated by HyMOGWW are less diverse than the
ones generated by MOGWW, when using the W-
RoTS as reference front. This is because the local
search narrows the search towards specific regions
of better objective function values.

Table 2: Spread diversity measure for MOGWW and HyMOGWW (using W-RoTs as reference front).

ρ N
MOGWW spread HyMOGWW spread ratio
N 2N 4N N 2N 4N N 2N 4N

0.75 25 1.0637 1.1145 1.1363 1.0864 1.1476 1.2704 1.02 1.03 1.12
50 1.0667 1.1006 1.1216 1.0689 1.1318 1.2498 1.00 1.03 1.11
75 1.0682 1.0994 1.1150 1.0678 1.1392 1.2228 1.00 1.04 1.10

0.50 25 1.0824 1.2458 1.4152 1.1346 1.2994 1.4644 1.05 1.04 1.03
50 1.1016 1.2451 1.3886 1.1324 1.2743 1.4379 1.03 1.02 1.04
75 1.0794 1.2447 1.3917 1.1107 1.2336 1.4082 1.03 0.99 1.01

0.25 25 0.8856 1.0672 1.3069 1.0404 1.1538 1.3763 1.17 1.08 1.05
50 0.9156 1.0747 1.3161 1.0804 1.1962 1.3561 1.18 1.11 1.03
75 0.8983 1.0659 1.3089 1.0886 1.1927 1.3428 1.21 1.12 1.03

0.00 25 0.8382 0.9211 1.1676 1.0070 1.0606 1.2299 1.20 1.15 1.05
50 0.8269 0.8949 1.1436 1.0514 1.0996 1.2304 1.27 1.23 1.08
75 0.8361 0.8605 1.1174 1.0677 1.1288 1.2233 1.28 1.31 1.09

−0.25 25 0.8163 0.7869 0.9388 0.9709 0.9615 1.0809 1.19 1.22 1.15
50 0.8279 0.7868 0.9175 1.0277 1.0469 1.0746 1.24 1.33 1.17
75 0.8408 0.7924 0.8960 1.0444 1.0887 1.0902 1.24 1.37 1.22

−0.50 25 0.8227 0.7679 0.7937 0.9505 0.9433 0.9865 1.16 1.23 1.24
50 0.8401 0.7962 0.7575 1.0068 1.0034 0.9818 1.20 1.26 1.30
75 0.8607 0.8064 0.7482 1.0285 1.0541 1.0177 1.19 1.31 1.36

−0.75 25 0.8386 0.8086 0.7591 0.9176 0.9003 0.8850 1.09 1.11 1.17
50 0.8754 0.8424 0.7882 0.9667 0.9455 0.9227 1.10 1.12 1.17
75 0.8906 0.8558 0.7998 0.9952 0.9863 0.9634 1.12 1.15 1.20

6.2. HyMOGWW vs. MOGWW and
HyMOGWW vs. mPLS

The coverage, and binary epsilon indicators be-
tween each one of the non-dominated fronts gen-
erated at each run by the original MOGWW, by
the mPLS, and by the HyMOGWW are calculated.
The main goal is to ensure that the hybridization
(HyMOGWW) is better than any of its components
(MOGWW and mPLS). The measures were calcu-
lated taking one by one the fronts from MOGWW
and mPLS, and comparing them with every front
from HyMOGWW (one by one). We calculate the
average values, the dominance measure is calculated
as the percentage of times solutions of one algorithm
completely dominates the other’s in terms of the bi-

nary epsilon indicators,10 as it was explained in Sec-
tion 2. We take the 50 averages obtained for each
MOGWW front and report the average over these
50 values.

Table 3 shows the results obtained when com-
paring the MOGWW algorithm with HyMOGWW,
using P = L = N. The table contains the coverage
and dominance relations, the binary indicators, and
the ratio between the computation times for different
correlations between flow matrices.

The HyMOGWW algorithm shows a strong
dominance and coverage over the original algorithm
on all instances, however, MOGWW uses only from
5% up to 41% of the time required by the hybrid
version. Then, we increase the parameter values for
MOGWW in order to make a fair comparison with
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HyMOGWW, regarding the computation time. Ta-
ble 3 shows the results obtained when comparing
HyMOGWW using P = L = N and MOGWW using
P = L = 2N. We can see that HyMOGWW clearly
outperforms MOGWW in terms of coverage, dom-
inance and binary indicator values. Moreover, us-
ing these parameter values, the computation time re-
quired by HyMOGWW was lower for 12 out of 21
instances, bigger for 8 instances, and approximately
the same in one. That is, using P = L = N for Hy-
MOGWW and P = L = 2N for MOGWW, the for-
mer clearly outperforms the latter using less compu-
tation time for more than half of the instances.

We know already that the HyMOGWW outper-
forms MOGWW, however, can this be due to the
contribution of mPLS only and not to the hybridiza-
tion? To answer this question we compare the re-
sults of mPLS with those of HyMOGWW. The re-
sults of this comparison are shown in Table 4. The
HyMOGWW algorithm shows a strong dominance
and coverage over mPLS on all instances, how-
ever, mPLS uses less computation time than Hy-
MOGWW for 16 out of 21 instances. Then, in order
to balance the computation effort we increase the
parameter values for mPLS. Table 4 shows the re-
sults obtained when comparing HyMOGWW using
P = L = N and mPLS using N,2N and 4N. We can
see that HyMOGWW clearly outperforms mPLS in
terms of coverage, dominance and binary indica-
tor values. The values for %d2 are all 0.00 except
for four instances with correlation ρ = 0.75, result-
ing %d2 = 6 for two instances of size N = 25, and
%d2 = 2 for two instances of size N = 50. Moreover,
the computation time required by HyMOGWW was

lower for 14 out of 21 instances, and 18 out of 21,
when mPLS uses a number of solutions equals to 2N
and 4N, respectively.

6.3. Comparing HyMOGWW with W-RoTs

Since HyMOGWW outperforms both of its com-
ponents, we will compare this variant with a well
known reference front for the set of instances de-
fined by Paquete and Stützle,10 the same that we use
along this section. Since there is only one reference
front from W-RoTs, we calculated the measures by
comparing the result from each HyMOGWW run
with it and take the average values, following the
approach of Paquete and Stützle.10 The dominance
measure represents the percentage of times the W-
RoTs front completely dominates the fronts gener-
ated by the HyMOGWW in terms of the binary ep-
silon indicators, as explained in Section 2.

Table 5 shows the results obtained when compar-
ing HyMOGWW using P = L = {N,2N,4N} and
W-RoTs. Since our algorithm neither covered (%c2)
nor dominated (%d2) the reference front, obtaining
0% for all instances, we do not show those columns
in this table. We can see that the coverage over our
algorithm slightly decreases by using larger values
for the parameters P and L, reaching a minimum
%c1 value of 79.82%, for P = L = 4N. On the other
hand, in terms of dominance most values keep over
90%, for %d1, for P = L = 4N values, and only for
instances with correlation −0.75 there is a signifi-
cant reduction of %d1 reaching even 0% for a cou-
ple of instances. Moreover, for 7 out of 21 instances
the dominance is 100%, and for 14 of them is bigger
than 95%.
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When we compare the results of PLS (Table 1)
with ours (Table 5) for P = L = 4N, we can see that
the PLS results regarding dominance (Table 1, third
column; and Table 5, 14th column) are better than
ours, however when comparing the epsilon indica-
tors our results are better for positive correlation and
some negative ones (Table 1, columns 4 and 5; and
Table 5, columns 15 and 16). We can then conclude,
in relative terms, that our solutions are of compara-
ble quality to those of PLS. Unfortunately, the PLS
results are not available for a direct comparison. It is
worth noting that the computation resources of Pa-
quete and Stützle10 and ours are comparable.

We need now to see how the different correla-
tion values influences the performance measures we
have chosen when different sets of P and L val-
ues are considered. Figure 1 shows W-RoTS cov-
erage over HyMOGWW and binary indicators be-
tween their results. The figures show the results for
P = L = {N,2N,4N} and all instances with differ-
ent correlations between flow matrices. We can see
that for almost all correlations and instance sizes, we
can improve the epsilon indicator results, although
slightly, by increasing the values of P and L. The
improvements given by these changes are more sig-
nificant for instances with strong negative correla-
tion when we consider the binary epsilon indicator,
while for coverage the improvements are greater for
small instances.

The binary indicator results seem to contradict
the ones obtained for coverage relations. This is be-
cause coverage relations only tell us that a set of so-
lutions is covering another set of solutions, they do
not give us information about the distance between
them. On the other hand, the binary epsilon indica-
tor only gives information about how close the sets
are from one another.

The improvement achieved by increasing P and
L values lead to larger computation times, as can be
seen in Figure 2. The effort grows roughly 10 times
from P = L = N to P = L = 4N for the three instance
sizes.

After analyzing all these results we can better un-
derstand the hybridization effects. The problem we
see when using HyMOGWW is that, the main char-
acteristic of the MOGWW is to keep a uniformly

distributed set of solutions at each step. Therefore,
even in the case we improve each solution, there
may be cases where the improved solution is not far
from its seed and then, all solutions will be again in
a non-dominated front. In this case, however, all so-
lutions are guaranteed to be locally Pareto optimal.

It is worth noting that the instances generator,
with high positive correlations produces a Pareto
front with few solutions that are close to each other,
resembling a single-objective problem. It will be
very helpful to generate instances with a Pareto front
with few solutions that are far away from each-other,
since generating few solutions close to each other in-
duces a similar difficulty to that of single-objective
problems.

An analysis of dominance and binary indicators
for different correlation values in the flow matrices
is also reported in previous works.10,17 For negative
correlations there are many Pareto-optimal solutions
and it is easy for an algorithm to find one, however,
it is hard to find all of them. Therefore it is likely
that two algorithms find non-dominated fronts that
are non-dominated between them, resulting in small
coverage values and large epsilon binary indicators.
On the contrary, for positive correlations there are
only few Pareto-optimal solutions and it is difficult
to find them. That is, although an algorithm finds
very good solutions it is likely to be dominated by
a Pareto-optimal solution. This lead to large cover-
age values and small epsilon binary indicators. Our
results then shows that W-RoTS outperforms Hy-
MOGWW in terms of coverage and binary epsilon
indicators for all instances. The most favorable re-
sults for HyMOGWW occur when we deal with neg-
ative correlations and large instances.

It is worth discussing here the relative perfor-
mance we should expect from the proposed ap-
proach, regarding state-of-the-art hybridized ap-
proaches like those based on GA or ACO. Given
the simplicity of the HyMOGWW it is expected
that state-of-the-art approaches17 (ACO and GA)
should outperform it, in terms of solution quality,
i.e. better non-dominated fronts. This is mainly
because the HyMOGWW is a general framework
where specific mechanisms can still be inserted. For
instance, the random walk mechanism ensures a uni-
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Figure 1: Percentage of W-RoTS coverage over HyMOGWW (left) and Binary Epsilon Indicator
Iε(HyMOGWW,W −RoT S) (right), instance sizes 25 (top), 50 (middle), and 75 (bottom).

form sampling of the solution space, then we can
add a mechanism to better exploit promising re-
gions. The mechanism to perform each random walk
step can also be modified to exploit any knowledge

we may have on the problem. With the introduction
of these modifications we should expect competitive
results with those obtained by the state-of-the-art hy-
bridized approaches.
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Figure 2: Mean computation time for HyMOGWW, instance sizes 25, 50, and 75.

7. Conclusions

A complete description of the Multi-Objective
GWW is presented, and a hybrid version of it has
been proposed. The hybridization was focused
on adding a multi-objective local search once all
MOGWW solutions are in the same non-dominated
set. The hybridization is done using a modified ver-
sion of the PLS algorithm, with a fixed number of
solutions. The algorithm was applied to instances of
the bi-objective version of the well-known Quadratic
Assignment Problem.

The hybrid version outperforms both of its com-
ponents: the original MOGWW algorithm and the
PLS variant it uses, in terms of coverage and bi-
nary epsilon indicators (dominance). The results
show that, the correlation between flow matrices in-
fluences the algorithm’s performance as it was pre-
viously reported in the literature. For large posi-
tive correlations, MOGWW variant was fully dom-
inated by W-RoTS, while for large negative corre-
lations, HyMOGWW is slightly less dominated by
W-RoTS. However, for large positive correlation the
binary epsilon indicators show that our results were
at a small factor from the W-RoTS results.

Future research is planned to explore other
means to improve the hybridization. Additionally,
a study of the HyMOGWW behavior when a large
number of objective functions is considered, and a
comparison with hybridizations like MO-ACO and
SPEA2 with Taboo17 are planned.
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[12] T. Stützle and M. Dorigo. “Local search
and metaheuristics for the quadratic as-
signment problem”. Technical Report
AIDA-01-01, TU Darmstadt, Germany, 2001.
URL http://iridia.ulb.ac.be/~meta/
newsite/downloads/qap.pdf.

[13] J. D. Knowles and D. Corne. “Towards Land-
scape Analyses to Inform the Design of Hybrid
Local Search for the Multiobjective Quadratic
Assignment Problem”. In Ajith Abraham,
Javier Ruiz del Solar, and Mario Köppen, edi-
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