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Abstract 

Distributed Permutation Flowshop Scheduling Problem (DPFSP) is a newly proposed scheduling problem, which is 
a generalization of classical permutation flow shop scheduling problem. The DPFSP is NP-hard in general. It is in 
the early stages of studies on algorithms for solving this problem. In this paper, we propose a GA-based algorithm, 
denoted by GA_LS, for solving this problem with objective to minimize the maximum completion time. In the pro-
posed GA_LS, crossover and mutation operators are designed to make it suitable for the representation of DPFSP 
solutions, where the set of partial job sequences is employed. Furthermore, GA_LS utilizes an efficient local search 
method to explore neighboring solutions. The local search method uses three proposed rules that move jobs within 
a factory or between two factories. Intensive experiments on the benchmark instances, extended from Taillard in-
stances, are carried out. The results indicate that the proposed hybrid genetic algorithm can obtain better solutions 
than all the existing algorithms for the DPFSP, since it obtains better relative percentage deviation and differences 
of the results are also statistically significant. It is also seen that best-known solutions for most instances are up-
dated by our algorithm. Moreover, we also show the efficiency of the GA_LS by comparing with similar genetic 
algorithms with the existing local search methods. 
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1. Introduction 

The Permutation Flowshop Scheduling Problem (PFSP) 
is a widely investigated complex optimization problem. 
Especially, the permutation flowshop scheduling prob-
lem with makespan criterion has been investigated most 
frequently in the past decades.1-5 Though the permuta-
tion flowshop scheduling problem with makespan crite-
rion is relatively simple, it is still a hard combinatorial 
problem. It is reported that the problem is NP-Complete 
in the strong sense when the number of machines in the 
problem is larger than 3.6 Given a PFSP, all jobs in a 
PFSP have to be processed in the same factory. Namely, 
the classical PFSP is based on the assumption that there 
is only one factory or shop. However, many modern 

companies have changed their manufacturing environ-
ments, where traditional single-factory environment is 
replaced by multi-factory environment and more facto-
ries are built to set up the environment7. It is reported8 
that the distributed environment can make companies 
achieve better product quality, lower production cost 
and lower management risks. Multi-factory companies 
will play a more important role in practice. Therefore, 
the DPFSP has been introduced by Naderi and Ruiz9 
recently. It is a generalization of the classical permuta-
tion flowshop scheduling problem, where a set of facto-
ries is combined with the classical problem and each job 
is allowed to be processed on one factory. The optimiza-
tion criterion discussed in Ref. 9 is the minimization of 
the maximum completion time among all the factories. 
Note that there is an overlap between DPFSP and flow 
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shop with parallel machines (FSPM)10 which handles a 
set of jobs with sets of parallel identical machines in 
some processing centers. But they differ from each 
other in terms of representation of solutions and applied 
algorithms because machines between centers are unre-
lated in FSPM. 

Algorithms for classical PFSP have been deeply 
studied. Since Johnson published the first paper11 about 
flowshop problem, there have been many publications 
on studying flowshop problems and various approaches 
to this problem have been proposed. In particular, there 
are a large mount of papers to deal with PFSP with 
makespan criterion. Exact searching algorithms, such as 
integer programming, branch & bound and backtracking, 
can obtain the optimized solutions. However, to some 
disappoint, those algorithms usually take a long CPU 
time to solve large PFSP because of the computational 
complexity of it. As stated in Ref 12, the best perform-
ing algorithms among those exact algorithms are able to 
solve instances with 20 jobs in maximum. Thus, those 
algorithms can only cope with small-scale scheduling 
problems. To solve large problem instances effectively 
for practical purposes, most researchers have to focus 
on developing heuristics that can find a near optimal 
solution in reasonable time. Some representative heuris-
tics include: the index heuristic proposed by Palmer,13 
the CDS method proposed by Campbell et al.14 and the 
NEH algorithm proposed by Nawaz et al.,15 where the 
NEH algorithm is regarded as one of the most efficient 
heuristics among heuristic algorithms. Some newly pro-
posed constructive methods were also published.16,17 
Improvements on NEH also emerged recently.5,18 The 
heuristic algorithms can usually build a feasible solution 
in polynomial time, but the quality of solutions may be 
not satisfactory. Therefore, metaheuristic algorithms for 
the PFSP have been developed. An increasing number 
of papers on this topic are being published. Tabu search 
methods were proposed in earlier studies. For instance, 
Armentano and Ronconi proposed a tabu search algo-
rithm for tardiness minimization19 and a fast tabu search 
algorithm was presented by Grabowski and Wodecki for 
makespan criterion.3 Simulated annealing and artificial 
immune algorithm were also used to solve the flowshop 
problems.20,21 Genetic algorithms12,22,23 and the ant col-
ony optimization in the Rajendran and Ziegler’s work4 
have been published in the last decade, as well as parti-
cle swarm optimization (PSO)24-26 and differential evo-

lution algorithm27 in recent works. In addition, the hy-
brid metaheuristic algorithms have also been investi-
gated recently.24 Some algorithms mentioned above, 
such as GA and PSO, are combined with local search 
methods in order to enhance searching for local-optimal 
solution. Many experiments show those hybrid algo-
rithms usually have good performance. 

As stated in Ref. 9, studies involving the DPFSP are 
rare and other kinds of distributed scheduling problems 
in the literature are in their infancy. Since DPFSP is a 
newly proposed scheduling problem, algorithms for 
DPFSP are only discussed in Ref 9. They are the exten-
sions of algorithms for PFSP. The work mainly includes 
algorithms of mixed integer linear programming and 
heuristics. Six mixed integer linear programming mod-
els have been investigated and implemented on highly 
optimized CPLEX11.1 package. Their performance was 
analyzed carefully. From the experimental results, it can 
be seen that only small instances (16 jobs and 4 facto-
ries) were tested by those exact algorithms. While to 
solve large instances, 12 heuristics approaches, derived 
from well-known existing ones for PFSP, were pre-
sented, where two alternative rules for job assignments 
are combined with those heuristics: one locates the job 
to the factory with the lowest partial makespan; the 
other one tries all possible positions of all the factories 
for a job and places the job in the position that has the 
lowest makespan. Moreover, the work also presented a 
local search approach for the DPFSP, called Variable 
Neighborhood Descent (VND). It is a simple version of 
variable neighborhood search. The approach starts from 
the solution of NEH heuristic method, moves jobs in 
each factory, and then moves jobs from the factory with 
maximal makespan to other factories. There are two 
criteria that are employed to accept job movements. 
Thus, two VND algorithms are referred as VND(a) and 
VND(b) by using the two acceptance criteria respec-
tively. Experiments on large instances indicate that 
VND(a) has the best performance among all the algo-
rithms in Ref. 9, though the total CPU times are longer 
than others. 

Genetic Algorithm (GA), first developed by Hol-
land,28 is a well-known adaptive heuristic search method. 
It is also a bio-inspired algorithm and is used to solve 
many optimization problems.12,29,30 It starts searching 
with the initial population where individuals are distrib-
uted in the search space. It works by iterating the three 
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operators that are selection, crossover and mutation. 
Better solutions in the current generation will be re-
served by the selection operation. Crossover, the next 
operator, is used to produce offspring for the next gen-
eration. Furthermore, mutation is used to escape from 
local minima by randomly modifying some offspring. 
GA has shown a good performance due to its global 
search ability compared with heuristic approaches and 
local search algorithms. GA also performs well on large 
instances of PFSP.12 However, to the best of our knowl-
edge, there is little work published on GA methods or 
other evolutional methods for the distributed PFSP. In 
this work, we propose a hybrid meta-heuristic algorithm 
based on GA to solve distributed PFSP instances. Also 
an efficient local search is incorporated into the GA 
algorithm for improving the performance. The entire 
proposed algorithm is denoted by GA_LS. The features 
of our GA_LS can be summarized as follows: since the 
representation of solutions for DPFSP is a set of job 
sequences, to make operators in GA suitable for the 
representation, crossover and mutation methods are 
proposed; the local search is carried out on some se-
lected individuals with the aim of finding better solu-
tions, where methods for job movements within a fac-
tory, job movements and exchanges between factories 
are designed. We carefully analyze the results of ex-
periments on the benchmark instances, from which we 
can see that the proposed GA_LS obtains much better 
solutions than the existing heuristic algorithms and up-
dates most best-known solutions. We also perform ex-
periments to compare the efficiency of GA_LS and ge-
netic algorithms using the local search methods VND(a) 
and VND(b). The results indicate that GA_LS is the 
most efficient algorithm among them. 

2. The distributed permutation flowshop 
scheduling problem 

The permutation flowshop scheduling problem can be 
described as follows:3 each of n jobs from the set 
J={1,2,…,n} has to be processed on m machines in the 
order of 1,2,…,m. Job j, j J∈ , consists of a sequence of 
m operations Oj1,Oj2,…,Ojm; operation Ojk corresponds 
to the processing of job j on machine k and is associated 
with a processing time pjk. Each machine can only proc-
ess one job at a time. Each job can be processed only on 
one machine at a time. All jobs are uninterrupted. The 

objective is to find a sequence of the jobs so that the 
given criterion is optimized.9 In this paper, we consider 
the maximum completion time or makespan as the crite-
rion. 

Let π  be a sequence of all jobs and C(j,k) denotes 
the completion time of Ojk. So we can calculate C(j,k) 
by the following formulas.31 

...1 2 n= {j , j , , j }π  

11
11 jC(j , ) p=  

11 1
ii i-1 jC(j , ) C(j , ) p= +  for ...i 2, ,n=  

ii i j kC(j ,k) C(j ,k -1) p= +  for ...k 2, ,m=  

1 ii i i j kC(j ,k)=max{C(j ,k),C(j ,k -1)}+p−
for i 2, ,n=  ; ...k 2, ,m=  

maxC ( )= C(n,m)π  
where 

maxC ( )π  is the makespan. The task of solving a 
permutation flowshop scheduling problem is to find a 
π  so that 

maxC ( )π  is minimized. 
The DPFSP can be defined as follows9: n jobs from 

the set {1, 2,..., }J n=  have to be processed on F facto-
ries, where each factory ...f G = {1, ,F}∈  contains the 
same set of m machines, which is same as the PFSP. All 
factories are able to process all jobs. When a job j is 
assigned to a factory f, it can not be transferred to an-
other factory and all operations of it can only be proc-
essed at factory f. Each operation Ojk is associated with 
a processing time pjk. Assume that this processing time 
of the operation is available for all factories. Namely, 
the processing time of Ojk in one factory is same as 
these of other factories. A schedule of jobs is a set of 
job sequences, denoted by ∏ . ∏  contains F job se-
quences. The intersection of any two job sequences is 
empty and the union of all job sequences is the set J. 
The makespan of a schedule ∏  is defined as the maxi-
mum makespan among all factories, and can be formu-
lated as follows.  

max{ }max max fC ( ) C ( )π∏ =  for f G∈  
where 

fπ  denotes the job sequence of the f-th factory. 
The goal of a DPFSP is to find the minimal makespan 
of the DPFSP.  

3. The proposed genetic algorithms  

3.1 Solution representation and initialization 

When coding a solution of PFSP, permutation of jobs is 
commonly used to represent a feasible scheduling. A 
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permutation is a processing order of jobs in the ma-
chines. We can calculate the makespan by calculating 
complete time of each job according to the permutation. 
For a DPFSP, the representation can be naturally ex-
tended to a set of job sequences, one for a factory. This 
method is also employed in Ref. 9 for their VND algo-
rithms. It is complete as the set of sequences can repre-
sent all the possible solutions. 

Initialization for genetic algorithms can be achieved 
by randomly generating the sequences of jobs. But in 
order to accelerate optimization of GA and ensure a 
faster convergence to good solutions, the initialization 
with NEH2 and VND(a)9 is carried out. The solutions 
obtained by NEH2 and VND(a) are assigned to ran-
domly selected individuals while other individuals are 
initialized by generating job sequences randomly. 

3.2 Design of operators 

Selection mechanism used in our GA is the method in 
the classical genetic algorithms, where individuals are 
ranked according to the fitness and then selected. The 
mutation operator is also designed for our algorithm. It 
exchanges some pairs of jobs randomly, and the number 
of pairs is chosen randomly but smaller than the half of 
the total number of jobs. The fitness of individuals is 
defined as follows: 

3(1/ )maxfitness C=  
Because differences of Cmax for individuals may be very 
small, we use (1/Cmax)3 to enlarge the differences. 

Crossover operator is to generate two new individu-
als that are probably of good fitness from two selected 
individuals. There are many crossover operators that 
have been presented in the literature. For example, order 
crossover was proposed by Davis.32 In Ref. 23, Murata 
et al. discussed one-point crossover and two-point cross-
over. As a mixed operator, one-point order crossover, 

which combines ideas of the one point crossover and the 
order crossover,33 was introduced, as well as two-point 
order crossover. Similar job order crossover and similar 
block order crossover were proposed by Ruiz et al. in 
Ref. 12. Because of the difference between the represen-
tation of DPFSP and that of classical PFSP, the cross-
over operator has to be rewritten. Our crossover opera-
tor is designed using a simple method. It is quite similar 
to the one-point (OP) crossover, which is quite easy to 
implement and extend to the representation of DPFSP. 

Our crossover operator selects points randomly for 
all factories of the second parent, which are used to di-
vide job sequences of the parent. The set of jobs on the 
right sides is denoted by R, and jobs in R will be re-
moved from the first parent. The remaining jobs in each 
sequence of the first parent are placed in the order of 
their appearance and inherited to the child. The right 
sides of the second parent are conjoined to the corre-
sponding factories of the child. On the other hand, the 
other child is produced with the above method by ex-
changing the role of two parents. 

An example of the crossover operation is illustrated 
in Fig. l. The set R of Parent 1 is composed of Jobs 1, 2, 
3 and 5. Jobs 4, 6 and 7 are inherited from Parent 1 to 
the Child 1, and Jobs 5, 3 and 1 from the first factory of 
Parent 2 are conjoined to the first factory of Child 1 
while Job 2 is conjoined to the second factory. 

Note that job sequences in a child obtained by the 
crossover operator may be not balanced. That is, some 
sequences may contain many more jobs than others, 
which probably causes the total makespan increases 
greatly. But it does not mean the crossover operator is 
not effective because local search is employed in our 
hybrid GA to adjust job sequences, and jobs in long 
sequences will be moved to other factories by the some 
methods discussed in the next subsection. 

 
Fig. 1. An example of crossover operator

Child 2 

Child 1 Parent 1 

1 2 3 4 

5 6 7 

7 5 3 1 

6 4 2 

4 5 3 1

6 7 2

5 3 1

6 2

4

7

4 5 3 1 

6 7 2 

5 3 1 

6 2 

4 

7 

Parent 2 
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3.3 Local search 

To overcome the disadvantage mentioned above and 
enhance searching in the local area, we design local 
search method for our genetic algorithm. The proce-
dures of local search are widely used in evolution algo-
rithms. It is highly capable at accelerating convergence 
and finding better solutions. In Ref. 9, VND(a) and 

VND(b) have been investigated for DPFSP, which are 
on the basis of variable neighborhood search. Job inser-
tion is employed for a single factory, and jobs in the 
factory with the maximal makespan will be tried to re-
located at all possible positions of other factories, from 
which the best movement will be performed. 

 
Insertion_Jobs  
let f be the factory to be improved 
foreach job j1 in the factory f 
 select j2 randomly (j1≠j2) 
 remove j1, j2 from f 
 find the best position of j1 in f and assign it to the position 
 find the best position of j2 in f and assign it to the position 
end 
Move_Jobs 
flag←true 
while flag do 
 flag←false 
 let fmax be the factory with maximum makespan and Cmax be the makespan 

 let fmin be the factory with minimum makespan. 
 foreach job j in fmax 
  find the best position of j from all possible positions in fmin 
  if new makespan of fmin is smaller than Cmax 
   remove j from fmax and assign it to the best position in fmin 
   flag←true 
   break 
 end 
end 
Exchange_Jobs 
flag←true 
while flag do 
 flag←false 
 let fmax be the factory with maximum makespan and Cmax be the makespan 

 let fmin be the factory with minimum makespan. 
 foreach job j in fmax 
  try to exchange j with each job in fmin 

 find the best exchange and denote the job in fmin by j1 
  if both new makespans of fmin and fmax are smaller than Cmax 
   exchange j and j1. 
   flag←true 
   break 
 end 
end 

Fig. 2. The procedure of Insertion_Jobs, Move_Jobs and Exchange_Jobs. 
Motivated by VND, we propose three new job 

movement methods: Insertion_Jobs, Exchange_Jobs and 
Move_Jobs. Insertion_Jobs is designed for a single fac-
tory while the others are used to move jobs between 
factories. The procedures of them are shown in Fig. 2. 
In the procedure of Insertion_Jobs, each job j1 of the 
factory is selected accompanying with a random se-

lected job j2, and the two jobs are removed from the 
factory. After that, j1 is reassigned at the best positions 
and then j2. In the procedure of Move_Jobs, the facto-
ries with the maximal makespan and the minimal 
makespan are found, denoted by fmax and fmin. We only 
consider moving jobs in fmax to fmin instead of all other 
factories because it will update fmax and fmin if a better 
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movement is performed. For each job j1 in fmax, all pos-
sible positions in fmin will be tried and moved to the best 
position if the movement improves the makespan of the 
DPFSP. Different from the method in Ref. 9, it will 
break to perfrom the next iteration when an improve-
ment is made. Otherwise, it continues trying the next 
job. The iteration will stop if all the jobs are tried but no 
improvement can be made. In the procedure of Ex-
change_Jobs, similar to Move_Jobs, fmax and fmin are 
found first. A job j1 in fmax is exchanged with each job in 
fmin, and best exchange will be performed if it can im-
prove the makespan. Then new fmax and fmin will be 
found for starting the next iteration. Iteration continues 
until it can not be improved. 
Local search 
flag←true 
foreach factory f 

perform Insertion_Jobs on f 
end 
while flag do 

perform Move_Jobs 
perform Exchange_Jobs  
if there is any factory f changed 
 perform Insertion_Jobs on f 
else 
 flag←false 
end 

end 
Fig. 3. The procedure of local search. 

The procedure of local search is indicated in Fig. 3, 
it is similar with VND method in Ref. 9, except the 
three new job movement methods. Each factory is proc-
essed by Insertion_Jobs first, and then Exchange_Jobs 
and Move_Jobs performed by marking the changed fac-
tories for further improvement by Insertion_Jobs. Con-
sider Child 1 in Example 1, our local search may per-
form as the following steps. 2 factories are processed by 
Insertion_Jobs first. Suppose the result is that 
f1={5,4,3,1} and f2 does not change, and f1 generates the 
overall Cmax. Thus, Move_Jobs tries to move each job in 
f1 to the 4 positions in f2, and Exchange_Jobs tries to 
exchange each job in f1 with 3 jobs in f2. Let us also 
suppose that Job 3 is inserted into f2 after Job 7, then 
f1={5,4,1} and f2={6,7,3,2} has to be processed by In-
sertion_Jobs again because they are changed. The pro-
cedure of local search will be stop in a local minimum 
when Move_Jobs and Exchange_Jobs cannot make any 
change. It is noted that we can use the accelerations 
developed by Taillard34 when implementing the three 

sub-procedure. It can decrease CPU time greatly espe-
cially for large-scale instances. 

3.4 An overview of GA_LS 

Now we give the entire algorithm of GA_LS. Fig. 4 
depicts the main procedure. 

GA_LS 
while stopping criterion is not satisfied do 

evaluate fitness 
apply local search on the best individual and a randomly selected 
individual 
update the best solution 
apply selection operator 
assign the best solution to a randomly selected individual 
apply crossover operator 
apply mutation operator 

end 
Fig. 4. The procedure of GA_LS 

Local search is performed within the each iteration 
after fitness computation with the aim at balancing jobs 
sequences in the individuals and finding a minimum 
solution in the local area. However, we only take the 
best individual and a random chosen individual to per-
form the proposed local search, as some individuals 
produced by crossover and mutation operators may be 
not good enough. Note that it may converge too fast if 
local search is only performed on the best solutions. 
Moreover, the best solution is copied to the offspring by 
assigning it to a random individual. 

4. Experiments 

To evaluate the performance of the proposed GA_LS, 
intensive computational experiments are carried out. In 
this section, the DPFSP benchmark problems are em-
ployed to test algorithms. The benchmark is available at 
http://soa.iti.es, where only large-scale instances are 
considered in the paper, as the number of jobs is up to 
16 and the number of machines is only 5 at most in 
small-scale instances. The set of large-scale instances is 
extended from the benchmark of Taillard by adding the 
number of factories F from {2,3,4,5,6,7}. The Taillard 
instances are composed of 12 combinations of n×m, and 
for each combination there are 10 different instances. 
Each instance in DPFSP benchmark is combined with 
six values to yield six instances of DPFSP benchmark, 
so the number of total instances reaches 720.  

In order to show the effectiveness and efficiency, 
comparison between existing heuristics discussed in Ref. 
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9 and the proposed GA_LS is carried out. Furthermore, 
we also compare the proposed GA_LS with the genetic 
algorithms associated with existing local search meth-
ods. Those genetic algorithms are tested with same pa-
rameters, where population size is set to 20, the maxi-
mum number of iterations is 100. They are decided on 
the basis of the results of preliminary computational 
observations. When the population size is up to 40, the 
convergence speed of those algorithms may decrease to 
a low value, while early convergence occurs when the 
size is set to a small value (e.g. 10). For most instances, 
when the number of iterations exceeds 100, the 
makespan is improved slightly or converges to the local-
optimal solution, so the maximum number of iterations 
is set to 100. The mutation probability is 0.1. The above 
algorithms are incorporated in a C++ program and im-
plemented within VC++6.0. We perform all experi-
ments on a PC with an Intel Core Duo 2.4GHz CPU, 
2GB RAM, running Windows XP. 

4.1 Comparison of best-known solutions 

The best solutions of the benchmark instances at 
http://soa.iti.es are obtained by the heuristic approaches 
mentioned in Ref. 9. As our GA_LS algorithm is initial-
ized by NEH and VND algorithms, GA_LS updates 
most of the best solutions greatly. In this section, we 
perform the GA_LS algorithm for all the 720 instances 
10 times, and record the best solutions. Then, we evalu-
ate our results of best solutions produced by GA_LS, 

and compare them with best-published results at 
http://soa.iti.es. Among all the 720 instances, GA_LS 
updates 692 best solutions. Relative percentage devia-
tion is employed to measure the results. 

= 1 0 0a lg - o p tR P D
o p t

×  

where opt is the best solution published and alg stands 
for the best solution obtained by GA_LS.  

Table 1 summarizes the results grouped by F as well 
as the results grouped by each combination of n and m. 
From Table 1, it can be seen that GA_LS provides bet-
ter solutions than all the algorithms mentioned in Ref. 9, 
as RPD values for all groups are minus. We can also see 
the total average RPD is -2.22%. GA_LS improves so-
lutions with F=2,3,4,5 a bit better than these with F=6,7, 
where the average RPD values for F=2,3,4,5 are better 
than the total average value. This is because GA_LS got 
solutions with same objective as (or worse than) the 
best-published results when solving some small in-
stances with F=6,7 and n=20. Among instances with 
n=20, there are 12 instances unimproved out of 30 in-
stances when F is set to 7 and 7 instances when F is set 
to 6, while the number is 1,2,3,3 for F=2,3,4,5 respec-
tively. However, it is worth noting that all the best solu-
tions of instances with n≥50 are improved by GA_LS. 
In addition, among those 28 unimproved instances, only 
6 solutions are worse than the best-published results. 
Moreover, Table 1 also demonstrates GA_LS can get 
minus RPD for each combination of n and m. 

 
Table 1. Average relative percentage deviation (RPD) of GA_LS 

F 2 3 4 5 6 7 
RPD -2.26 -2.48 -2.36 -2.32 -2.08 -1.85
n×m 20×5 20×10 20×20 50×5 50×10 50×20 
RPD -2.36 -1.91 -1.38 -2.75 -2.92 -2.44
n×m 100×5 100×10 100×20 200×10 200×20 500×20 
RPD -1.87  -2.72 -2.41 -1.99 -2.14  -1.77 

Average -2.22 

4.2 Compare to other algorithms 

In this subsection, we replace the best-published solu-
tions by our results produced by all the experiments in 
this paper including experiments in the next subsection. 
Many heuristic approaches have been tested in the Ref. 
9 by Naderi and Ruiz. As those heuristics are extensions 
of the well-known existing heuristics for solving regular 
PFSP, the effectiveness of them mainly depends on that 

of the corresponding original algorithms. We only con-
sider these four existing algorithms NEH1, NEH2, 
VND(a) and VND(b) in our experiments. The reason of 
this is those algorithms have far better performance than 
other heuristic algorithms evaluated in Ref. 9. Because 
there is no other meta-heuristics published to solve 
DPFSP, we implement two similar genetic algorithms to 
show our genetic algorithm with the presented local 
search method is efficient, where the operations of GA 

Published by Atlantis Press 
      Copyright: the authors 
                    503



Gao and Chen 

 

are same as the proposed one but they combine VND(a) 
and VND(b) as local search methods respectively. They 
are denoted by GA_VND(a) and GA_VND(b). All the 
parameters in these two algorithms are same as GA_LS.  

To compare the performance of these algorithms 
mentioned in the former paragraph, NEH1, NEH2, 
VND(a) and VND(b) are carried out once for all 720 
instances, while GA_VND(a) and GA_VND(b) are car-
ried out 10 times for all 720 instances. Average CPU 
time, average makespan, best makespan and worst 
makespan of GAs are recorded.  

First, we analyze RPD of the above experiment. Ta-
ble 2 indicates the results grouped by F. Average RPD 
values of 7 algorithms are listed. At the bottom of the 
table, the total average values of all F are reported as 
well. As can be seen, GA_LS outperforms all the other 
algorithms. Heuristic and local search algorithms have 
bigger RPD than genetic algorithms. It is not surprise 
that GA algorithms perform better than the NEH2 and 
VND(a) because of the initialization. However, among 
the three GAs, GA_LS performs best, while improve-
ments of GA_VND(b) are quite limited as the method 
of VND(b) is not considerable compared with VND(a). 
Moreover, it is interesting to note that the RPD of the 
worst solutions got by GA_LS is even better than the 
corresponding RPD of the best solutions produced by 
GA_VND(a), where we can find 0.91% and 1.41% for 
the total average RPD respectively. The best solution 
found by GA_LS produces an average RPD of 0.23%. 
Though GA_LS updates most of the best-known solu-
tions, the RPD is not very close to 0%. Note that the 
new best solutions employed here are the best solutions 
obtained by both GAs with 100 iterations and GAs with 
limited CPU times (discussed in the next subsection).  

Next, we give the RPD results grouped by the com-
bination of n and m, as well. Table 3 shows the results. 

From the table, similar conclusion can be drawn as from 
Table 2. For each combination, GA_LS performs best 
regardless of the average, best and worst RPDs. 

We also need to check whether the differences in 
Table 2 and Table 3 made by those algorithms are statis-
tically significant, which can help us to draw a better 
picture of the results. Three hypotheses (normality, ho-
mocedasticity and independence of the residuals) are 
checked and satisfied. Fig. 5 shows the ANOVA of the 
results, where mean plot with Tukey HSD intervals at 
99% confidence level for the algorithm factor is de-
picted. From Fig. 5, we can clearly observe that the 
GA_LS has a very good performance overcoming all 
the remaining methods. 

Next, we analyze CPU time of the experiment. The 
results grouped by F are listed in Table 4, where CPU 
time is in millisecond. Heuristic methods have the total 
average CPU time below 50ms while GAs take more 
time, where average times are larger than 2 seconds and 
10.17 seconds for the algorithm GA_LS. The largest 
CPU time 158.8 seconds is found for solving the in-
stance Ta_120_2 by GA_LS, where 500 jobs and 20 
machines have to be scheduled. Though they needed far 
more time than heuristic methods needed, the average 
CPU times of them can be accepted in practice use. We 
can also see CPU times decrease as the F grows. This is 
consistent with the results produced by heuristic meth-
ods. Hence, the results indicate that the instance be-
comes easier to solve when F grows. 

Among the three GAs, GA_LS needs the longest 
CPU time, where it is about 2 times larger than CPU 
time needed by GA_VND(a). So the local search 
method presented takes quite long time to find better 
solutions. To give a fair comparison between GAs, we 
conduct the experiments in the next subsection. 

Table 2. Average relative percentage deviation (RPD) of algorithms grouped by F 
F Algorithms 

 GA_VND(a) GA_VND(b) GA_LS 

 
NEH1 NEH2 VND(a) VND(b) 

Average Best Worst Average Best Worst Average Best Worst

2 5.47  3.72  2.64  3.09  1.58 1.18 1.98 2.17 1.79 2.49  0.58  0.17  1.01 

3 6.38  3.83  2.94  3.33  1.92 1.59 2.26 2.58 2.30 2.80  0.52  0.16  0.88 

4 7.08  3.93  2.88  3.48  1.86 1.57 2.18 2.65 2.44 2.81  0.61  0.27  0.97 

5 7.03  3.52  2.81  3.27  1.84 1.55 2.11 2.67 2.52 2.79  0.57  0.23  0.86 

6 7.16  3.45  2.71  3.24  1.72 1.44 2.00 2.58 2.46 2.65  0.60  0.29  0.90 

7 6.98  2.93  2.21  2.76  1.38 1.14 1.60 2.17 2.10 2.20  0.55  0.27  0.84 

Average 6.68  3.56  2.70  3.19  1.71 1.41 2.02 2.47 2.27 2.62  0.57  0.23  0.91 
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Table 3. Average relative percentage deviation (RPD) of algorithms grouped by n and m 
n×m Algorithms 

 GA_VND(a) GA_VND(b) GA_LS 

 
NEH1 NEH2 VND(a) VND(b) 

Average Best Worst Average Best Worst Average Best Worst

20×5 7.18 4.58  3.77  4.40 2.49 2.46 2.54 3.66 3.66 3.66  0.82  0.74 0.87 

20×10 6.11 3.39  2.79  3.05 1.66 1.54 1.75 2.71 2.67 2.73  0.75  0.57 0.94 

20×20 4.53 2.72  2.00  2.60 1.37 1.34 1.42 1.86 1.84 1.93  0.60  0.45 0.74 

50×5 9.54  4.23  3.36  3.93 2.43 2.28 2.55 3.20 3.12 3.23  0.48  0.24 0.74 

50×10 8.13  4.35  3.42  4.02 2.26 1.86 2.59 3.11 2.90 3.26  0.74  0.13 1.33 

50×20 6.38  3.81  2.78  3.37 1.90 1.55 2.23 2.50 2.32 2.65  0.64  0.11 1.14 

100×5 7.67  2.80  2.07  2.49 1.38 1.09 1.67 1.98 1.91 2.04  0.44  0.10 0.80 

100×10 7.80  3.78  2.81  3.33 1.84 1.39 2.28 2.51 2.20 2.76  0.60  0.09 1.11 

100×20 6.05  3.64  2.70  3.19 1.58 1.07 2.13 2.34 1.91 2.67  0.56  0.12 1.03 

200×10 6.75  3.13  2.36  2.77 1.32 0.83 1.88 2.12 1.74 2.34  0.43  0.10 0.80 

200×20 5.51  3.51  2.40  2.89 1.33 0.85 1.83 2.03 1.60 2.36  0.44  0.08 0.80 

500×20 4.56  2.82  1.90  2.29 1.01 0.69 1.37 1.60 1.33 1.84  0.34  0.07 0.61 
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Fig. 5. Tukey HSD intervals at 99% confidence level for the algorithm factor 

Table 4. Average CPU times of algorithms grouped by F (ms) 
F Algorithms 

 NEH1 NEH2 VND(a) VND(b) GA_VND(a) GA_VND(b) GA_LS 

2 3.61  7.12  73.72 49.35 4,899.94 3,776.00  15,539.58 

3 2.37  7.44  50.17 36.53 3,668.66 3,043.78  13,179.13 

4 1.92  7.66  40.87 27.57 3,168.10 2,586.34  10,529.33 

5 1.58  7.80  32.74 22.35 2,756.56 2,107.91  8,558.90 

6 1.30  7.91  28.15 19.46 2,474.34 1,820.40  7,148.80 

7 1.15  8.06  22.62 17.60 2,018.05 1,479.86  6,089.73 

Average 1.99  7.66  41.38 28.81 3,164.27 2,469.05  10,174.24 
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4.3 Comparison of GAs with same CPU times  

Taking into account differences in CPU times, we re-
cord average CPU times of the three genetic algorithms 
for all the 720 instances. To conduct fair experiments, 
we execute the three algorithms replacing the stopping 
criterion of iteration times by time limits. As each in-
stance has three CPU times of the three genetic algo-
rithms, there are three groups of CPU times that can be 
used as time limits. We employ each group as the time 
limits and carry out those algorithms so that those algo-
rithms are executed with the same CPU times. Thus, 
three groups of experiments are performed, where each 
instance is solved using each algorithm by 10 runs. Av-

erage RPD values for best, worst and average makespan 
of solutions are analyzed grouped by F, and the results 
are listed in Table 5, 6 and 7, as well as the total average 
RPD values. 

From the three tables, we can see that GA_LS per-
forms best regardless of CPU times cost. With the help 
of the proposed local search method, our genetic algo-
rithm has a fast convergence to good solutions. Since 
GA_LS produces best RPD for each F, it can solve in-
stances with different f efficiently. We also observe that 
even the RPD values of worst solutions obtained by 
GA_LS are smaller than RPD values of best solutions 
yielded by others regardless of the time limits used.  

Table 5. Average RPD of genetic algorithms using CPU times of GA_LS as time limits 
F Algorithms 

 GA_VND(a) GA_VND(b) GA_LS 

 Average Best Worst Average Best Worst Average Best Worst 

2 1.55 1.05 2.12 2.14 1.67 2.52 0.49 0.14 0.94

3 1.80 1.28 2.27 2.55 2.14 2.87 0.53 0.15 0.91

4 1.78 1.32 2.25 2.62 2.27 2.86 0.60 0.26 0.95

5 1.67 1.28 2.08 2.61 2.35 2.78 0.55 0.21 0.90

6 1.66 1.27 2.05 2.57 2.39 2.68 0.65 0.28 1.04

7 1.29 0.95 1.62 2.14 1.99 2.20 0.52 0.25 0.85

Average 1.62 1.19 2.06 2.44 2.14 2.65 0.56 0.22 0.93
 

Table 6. Average RPD of genetic algorithms using CPU times of GA_VND(a) as time limits 
F Algorithms 

 GA_VND(a) GA_VND(b) GA_LS 

 Average Best Worst Average Best Worst Average Best Worst 

2 1.59 1.28 1.92 2.17 1.87 2.45 0.86 0.60 1.15

3 1.83 1.50 2.21 2.62 2.36 2.82 0.82 0.55 1.09

4 1.85 1.56 2.17 2.68 2.43 2.84 0.92 0.59 1.20

5 1.79 1.50 2.09 2.69 2.52 2.79 0.91 0.64 1.16

6 1.72 1.47 1.95 2.56 2.41 2.66 0.90 0.63 1.14

7 1.45 1.21 1.65 2.15 2.06 2.20 0.73 0.50 0.94

Average 1.70 1.42 2.00 2.48 2.28 2.63 0.86 0.59 1.11
 

Table 7. Average RPD of genetic algorithms using CPU times of GA_VND(b) as time limits 
F Algorithms 

 GA_VND(a) GA_VND(b) GA_LS 

 Average Best Worst Average Best Worst Average Best Worst 

2 1.65 1.29 1.98 2.15 1.84 2.44 0.86 0.61 1.15

3 1.93 1.65 2.26 2.58 2.32 2.79 0.97 0.74 1.24

4 1.86 1.60 2.17 2.66 2.45 2.81 0.93 0.66 1.22
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Table 7(continued). Average RPD of genetic algorithms using CPU times of GA_VND(b) as time limits 
5 1.79 1.55 2.05 2.68 2.54 2.79 0.88 0.65 1.13

6 1.74 1.45 2.00 2.58 2.46 2.66 0.88 0.65 1.11

7 1.48 1.29 1.73 2.15 2.07 2.19 0.74 0.52 0.96

Average 1.74 1.47 2.03 2.47 2.28 2.61 0.88 0.64 1.13

5. Conclusions 

The distributed permutation flowshop scheduling prob-
lem is a newly proposed scheduling problem, which is 
in the set of NP-hard. Several heuristic and local search 
algorithms have been presented in Ref. 9, as well as 
MIP methods that can only solve small-scale instances 
though they are exact methods. There is little attention 
on meta-heuristic algorithms for DPFSP. Meanwhile, 
meta-heuristic algorithms play an important role for 
classical PFSP, and a great amount of works have been 
published on this topic. In this paper, we proposed a 
hybrid genetic algorithm with local search for minimiz-
ing the makespan of DPFSP. Our work can be summa-
rized as follows: a genetic algorithm has been deeply 
studied, where the crossover operator was designed by 
extending the one-point crossover for general GAs; lo-
cal search method was developed, where three local 
search operations were proposed by improving the ex-
isting VND method. The intensive experimental results 
revealed that our GA_LS performed much better than 
other algorithms in the literature. It can find solutions 
with better quality and even updated the best-known 
solutions of most benchmark instances. The experimen-
tal results also revealed that the genetic algorithm with 
the proposed local search method performs better than 
genetic algorithms combined with the VND methods. 
Experiments with same stopping criterions were carried 
out, where same iteration times and same CPU times 
were used as stopping criterions respectively. The re-
sults demonstrated GA_LS has the best RPD values 
compared with those genetic algorithms. A weakness of 
the proposed genetic algorithm is that when solving 
some small-scale instances that n is 20, it did not per-
form very well, since there are some instances whose 
best solutions can not be updated. But it has satisfactory 
performance on other instances (n≥50). Furthermore, 
since only simple crossover operator was investigated in 
our work, a future work is to propose and study other 
more efficient crossover operators for DPFSP with the 
aim at improving performance of genetic algorithms.  

We can see that meta-heuristics have achieved great 
successes on classical PFSPs, so designing other meta-
heuristics to solve DPFSPs is also a necessary future 
work.   
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