

A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem

Jian Gao, Rong Chen*
College of Information Science and Technology, Dalian Maritime University

 Dalian, 116026, China.

Abstract

Distributed Permutation Flowshop Scheduling Problem (DPFSP) is a newly proposed scheduling problem, which is
a generalization of classical permutation flow shop scheduling problem. The DPFSP is NP-hard in general. It is in
the early stages of studies on algorithms for solving this problem. In this paper, we propose a GA-based algorithm,
denoted by GA_LS, for solving this problem with objective to minimize the maximum completion time. In the pro-
posed GA_LS, crossover and mutation operators are designed to make it suitable for the representation of DPFSP
solutions, where the set of partial job sequences is employed. Furthermore, GA_LS utilizes an efficient local search
method to explore neighboring solutions. The local search method uses three proposed rules that move jobs within
a factory or between two factories. Intensive experiments on the benchmark instances, extended from Taillard in-
stances, are carried out. The results indicate that the proposed hybrid genetic algorithm can obtain better solutions
than all the existing algorithms for the DPFSP, since it obtains better relative percentage deviation and differences
of the results are also statistically significant. It is also seen that best-known solutions for most instances are up-
dated by our algorithm. Moreover, we also show the efficiency of the GA_LS by comparing with similar genetic
algorithms with the existing local search methods.

Keywords: Distributed scheduling; Permutation flowshop; Genetic algorithm; Local search

*Corresponding author. E-mail address: rchen@dl.cn

1. Introduction

The Permutation Flowshop Scheduling Problem (PFSP)
is a widely investigated complex optimization problem.
Especially, the permutation flowshop scheduling prob-
lem with makespan criterion has been investigated most
frequently in the past decades.1-5 Though the permuta-
tion flowshop scheduling problem with makespan crite-
rion is relatively simple, it is still a hard combinatorial
problem. It is reported that the problem is NP-Complete
in the strong sense when the number of machines in the
problem is larger than 3.6 Given a PFSP, all jobs in a
PFSP have to be processed in the same factory. Namely,
the classical PFSP is based on the assumption that there
is only one factory or shop. However, many modern

companies have changed their manufacturing environ-
ments, where traditional single-factory environment is
replaced by multi-factory environment and more facto-
ries are built to set up the environment7. It is reported8
that the distributed environment can make companies
achieve better product quality, lower production cost
and lower management risks. Multi-factory companies
will play a more important role in practice. Therefore,
the DPFSP has been introduced by Naderi and Ruiz9
recently. It is a generalization of the classical permuta-
tion flowshop scheduling problem, where a set of facto-
ries is combined with the classical problem and each job
is allowed to be processed on one factory. The optimiza-
tion criterion discussed in Ref. 9 is the minimization of
the maximum completion time among all the factories.
Note that there is an overlap between DPFSP and flow

International Journal of Computational Intelligence Systems, Vol. 4, No. 4 (June, 2011), 497-508

Published by Atlantis Press
 Copyright: the authors
 497

Administrateur
Texte tapé à la machine
Received 12 December 2010

Administrateur
Texte tapé à la machine
Accepted 31 January 2011

Administrateur
Texte tapé à la machine

Gao and Chen

shop with parallel machines (FSPM)10 which handles a
set of jobs with sets of parallel identical machines in
some processing centers. But they differ from each
other in terms of representation of solutions and applied
algorithms because machines between centers are unre-
lated in FSPM.

Algorithms for classical PFSP have been deeply
studied. Since Johnson published the first paper11 about
flowshop problem, there have been many publications
on studying flowshop problems and various approaches
to this problem have been proposed. In particular, there
are a large mount of papers to deal with PFSP with
makespan criterion. Exact searching algorithms, such as
integer programming, branch & bound and backtracking,
can obtain the optimized solutions. However, to some
disappoint, those algorithms usually take a long CPU
time to solve large PFSP because of the computational
complexity of it. As stated in Ref 12, the best perform-
ing algorithms among those exact algorithms are able to
solve instances with 20 jobs in maximum. Thus, those
algorithms can only cope with small-scale scheduling
problems. To solve large problem instances effectively
for practical purposes, most researchers have to focus
on developing heuristics that can find a near optimal
solution in reasonable time. Some representative heuris-
tics include: the index heuristic proposed by Palmer,13
the CDS method proposed by Campbell et al.14 and the
NEH algorithm proposed by Nawaz et al.,15 where the
NEH algorithm is regarded as one of the most efficient
heuristics among heuristic algorithms. Some newly pro-
posed constructive methods were also published.16,17
Improvements on NEH also emerged recently.5,18 The
heuristic algorithms can usually build a feasible solution
in polynomial time, but the quality of solutions may be
not satisfactory. Therefore, metaheuristic algorithms for
the PFSP have been developed. An increasing number
of papers on this topic are being published. Tabu search
methods were proposed in earlier studies. For instance,
Armentano and Ronconi proposed a tabu search algo-
rithm for tardiness minimization19 and a fast tabu search
algorithm was presented by Grabowski and Wodecki for
makespan criterion.3 Simulated annealing and artificial
immune algorithm were also used to solve the flowshop
problems.20,21 Genetic algorithms12,22,23 and the ant col-
ony optimization in the Rajendran and Ziegler’s work4
have been published in the last decade, as well as parti-
cle swarm optimization (PSO)24-26 and differential evo-

lution algorithm27 in recent works. In addition, the hy-
brid metaheuristic algorithms have also been investi-
gated recently.24 Some algorithms mentioned above,
such as GA and PSO, are combined with local search
methods in order to enhance searching for local-optimal
solution. Many experiments show those hybrid algo-
rithms usually have good performance.

As stated in Ref. 9, studies involving the DPFSP are
rare and other kinds of distributed scheduling problems
in the literature are in their infancy. Since DPFSP is a
newly proposed scheduling problem, algorithms for
DPFSP are only discussed in Ref 9. They are the exten-
sions of algorithms for PFSP. The work mainly includes
algorithms of mixed integer linear programming and
heuristics. Six mixed integer linear programming mod-
els have been investigated and implemented on highly
optimized CPLEX11.1 package. Their performance was
analyzed carefully. From the experimental results, it can
be seen that only small instances (16 jobs and 4 facto-
ries) were tested by those exact algorithms. While to
solve large instances, 12 heuristics approaches, derived
from well-known existing ones for PFSP, were pre-
sented, where two alternative rules for job assignments
are combined with those heuristics: one locates the job
to the factory with the lowest partial makespan; the
other one tries all possible positions of all the factories
for a job and places the job in the position that has the
lowest makespan. Moreover, the work also presented a
local search approach for the DPFSP, called Variable
Neighborhood Descent (VND). It is a simple version of
variable neighborhood search. The approach starts from
the solution of NEH heuristic method, moves jobs in
each factory, and then moves jobs from the factory with
maximal makespan to other factories. There are two
criteria that are employed to accept job movements.
Thus, two VND algorithms are referred as VND(a) and
VND(b) by using the two acceptance criteria respec-
tively. Experiments on large instances indicate that
VND(a) has the best performance among all the algo-
rithms in Ref. 9, though the total CPU times are longer
than others.

Genetic Algorithm (GA), first developed by Hol-
land,28 is a well-known adaptive heuristic search method.
It is also a bio-inspired algorithm and is used to solve
many optimization problems.12,29,30 It starts searching
with the initial population where individuals are distrib-
uted in the search space. It works by iterating the three

Published by Atlantis Press
 Copyright: the authors
 498

A hybrid genetic algorithm

operators that are selection, crossover and mutation.
Better solutions in the current generation will be re-
served by the selection operation. Crossover, the next
operator, is used to produce offspring for the next gen-
eration. Furthermore, mutation is used to escape from
local minima by randomly modifying some offspring.
GA has shown a good performance due to its global
search ability compared with heuristic approaches and
local search algorithms. GA also performs well on large
instances of PFSP.12 However, to the best of our knowl-
edge, there is little work published on GA methods or
other evolutional methods for the distributed PFSP. In
this work, we propose a hybrid meta-heuristic algorithm
based on GA to solve distributed PFSP instances. Also
an efficient local search is incorporated into the GA
algorithm for improving the performance. The entire
proposed algorithm is denoted by GA_LS. The features
of our GA_LS can be summarized as follows: since the
representation of solutions for DPFSP is a set of job
sequences, to make operators in GA suitable for the
representation, crossover and mutation methods are
proposed; the local search is carried out on some se-
lected individuals with the aim of finding better solu-
tions, where methods for job movements within a fac-
tory, job movements and exchanges between factories
are designed. We carefully analyze the results of ex-
periments on the benchmark instances, from which we
can see that the proposed GA_LS obtains much better
solutions than the existing heuristic algorithms and up-
dates most best-known solutions. We also perform ex-
periments to compare the efficiency of GA_LS and ge-
netic algorithms using the local search methods VND(a)
and VND(b). The results indicate that GA_LS is the
most efficient algorithm among them.

2. The distributed permutation flowshop
scheduling problem

The permutation flowshop scheduling problem can be
described as follows:3 each of n jobs from the set
J={1,2,…,n} has to be processed on m machines in the
order of 1,2,…,m. Job j, j J∈ , consists of a sequence of
m operations Oj1,Oj2,…,Ojm; operation Ojk corresponds
to the processing of job j on machine k and is associated
with a processing time pjk. Each machine can only proc-
ess one job at a time. Each job can be processed only on
one machine at a time. All jobs are uninterrupted. The

objective is to find a sequence of the jobs so that the
given criterion is optimized.9 In this paper, we consider
the maximum completion time or makespan as the crite-
rion.

Let π be a sequence of all jobs and C(j,k) denotes
the completion time of Ojk. So we can calculate C(j,k)
by the following formulas.31

...1 2 n= {j , j , , j }π

11
11 jC(j ,) p=

11 1
ii i-1 jC(j ,) C(j ,) p= + for ...i 2, ,n=

ii i j kC(j ,k) C(j ,k -1) p= + for ...k 2, ,m=

1 ii i i j kC(j ,k)=max{C(j ,k),C(j ,k -1)}+p−
for i 2, ,n= ; ...k 2, ,m=

maxC ()= C(n,m)π
where

maxC ()π is the makespan. The task of solving a
permutation flowshop scheduling problem is to find a
π so that

maxC ()π is minimized.
The DPFSP can be defined as follows9: n jobs from

the set {1, 2,..., }J n= have to be processed on F facto-
ries, where each factory ...f G = {1, ,F}∈ contains the
same set of m machines, which is same as the PFSP. All
factories are able to process all jobs. When a job j is
assigned to a factory f, it can not be transferred to an-
other factory and all operations of it can only be proc-
essed at factory f. Each operation Ojk is associated with
a processing time pjk. Assume that this processing time
of the operation is available for all factories. Namely,
the processing time of Ojk in one factory is same as
these of other factories. A schedule of jobs is a set of
job sequences, denoted by ∏ . ∏ contains F job se-
quences. The intersection of any two job sequences is
empty and the union of all job sequences is the set J.
The makespan of a schedule ∏ is defined as the maxi-
mum makespan among all factories, and can be formu-
lated as follows.

max{ }max max fC () C ()π∏ = for f G∈
where

fπ denotes the job sequence of the f-th factory.
The goal of a DPFSP is to find the minimal makespan
of the DPFSP.

3. The proposed genetic algorithms

3.1 Solution representation and initialization

When coding a solution of PFSP, permutation of jobs is
commonly used to represent a feasible scheduling. A

Published by Atlantis Press
 Copyright: the authors
 499

Gao and Chen

permutation is a processing order of jobs in the ma-
chines. We can calculate the makespan by calculating
complete time of each job according to the permutation.
For a DPFSP, the representation can be naturally ex-
tended to a set of job sequences, one for a factory. This
method is also employed in Ref. 9 for their VND algo-
rithms. It is complete as the set of sequences can repre-
sent all the possible solutions.

Initialization for genetic algorithms can be achieved
by randomly generating the sequences of jobs. But in
order to accelerate optimization of GA and ensure a
faster convergence to good solutions, the initialization
with NEH2 and VND(a)9 is carried out. The solutions
obtained by NEH2 and VND(a) are assigned to ran-
domly selected individuals while other individuals are
initialized by generating job sequences randomly.

3.2 Design of operators

Selection mechanism used in our GA is the method in
the classical genetic algorithms, where individuals are
ranked according to the fitness and then selected. The
mutation operator is also designed for our algorithm. It
exchanges some pairs of jobs randomly, and the number
of pairs is chosen randomly but smaller than the half of
the total number of jobs. The fitness of individuals is
defined as follows:

3(1/)maxfitness C=
Because differences of Cmax for individuals may be very
small, we use (1/Cmax)3 to enlarge the differences.

Crossover operator is to generate two new individu-
als that are probably of good fitness from two selected
individuals. There are many crossover operators that
have been presented in the literature. For example, order
crossover was proposed by Davis.32 In Ref. 23, Murata
et al. discussed one-point crossover and two-point cross-
over. As a mixed operator, one-point order crossover,

which combines ideas of the one point crossover and the
order crossover,33 was introduced, as well as two-point
order crossover. Similar job order crossover and similar
block order crossover were proposed by Ruiz et al. in
Ref. 12. Because of the difference between the represen-
tation of DPFSP and that of classical PFSP, the cross-
over operator has to be rewritten. Our crossover opera-
tor is designed using a simple method. It is quite similar
to the one-point (OP) crossover, which is quite easy to
implement and extend to the representation of DPFSP.

Our crossover operator selects points randomly for
all factories of the second parent, which are used to di-
vide job sequences of the parent. The set of jobs on the
right sides is denoted by R, and jobs in R will be re-
moved from the first parent. The remaining jobs in each
sequence of the first parent are placed in the order of
their appearance and inherited to the child. The right
sides of the second parent are conjoined to the corre-
sponding factories of the child. On the other hand, the
other child is produced with the above method by ex-
changing the role of two parents.

An example of the crossover operation is illustrated
in Fig. l. The set R of Parent 1 is composed of Jobs 1, 2,
3 and 5. Jobs 4, 6 and 7 are inherited from Parent 1 to
the Child 1, and Jobs 5, 3 and 1 from the first factory of
Parent 2 are conjoined to the first factory of Child 1
while Job 2 is conjoined to the second factory.

Note that job sequences in a child obtained by the
crossover operator may be not balanced. That is, some
sequences may contain many more jobs than others,
which probably causes the total makespan increases
greatly. But it does not mean the crossover operator is
not effective because local search is employed in our
hybrid GA to adjust job sequences, and jobs in long
sequences will be moved to other factories by the some
methods discussed in the next subsection.

Fig. 1. An example of crossover operator

Child 2

Child 1 Parent 1

1 2 3 4

5 6 7

7 5 3 1

6 4 2

4 5 3 1

6 7 2

5 3 1

6 2

4

7

4 5 3 1

6 7 2

5 3 1

6 2

4

7

Parent 2

Published by Atlantis Press
 Copyright: the authors
 500

A hybrid genetic algorithm

3.3 Local search

To overcome the disadvantage mentioned above and
enhance searching in the local area, we design local
search method for our genetic algorithm. The proce-
dures of local search are widely used in evolution algo-
rithms. It is highly capable at accelerating convergence
and finding better solutions. In Ref. 9, VND(a) and

VND(b) have been investigated for DPFSP, which are
on the basis of variable neighborhood search. Job inser-
tion is employed for a single factory, and jobs in the
factory with the maximal makespan will be tried to re-
located at all possible positions of other factories, from
which the best movement will be performed.

Insertion_Jobs
let f be the factory to be improved
foreach job j1 in the factory f
 select j2 randomly (j1≠j2)
 remove j1, j2 from f
 find the best position of j1 in f and assign it to the position
 find the best position of j2 in f and assign it to the position
end
Move_Jobs
flag←true
while flag do
 flag←false
 let fmax be the factory with maximum makespan and Cmax be the makespan

 let fmin be the factory with minimum makespan.
 foreach job j in fmax
 find the best position of j from all possible positions in fmin
 if new makespan of fmin is smaller than Cmax
 remove j from fmax and assign it to the best position in fmin
 flag←true
 break
 end
end
Exchange_Jobs
flag←true
while flag do
 flag←false
 let fmax be the factory with maximum makespan and Cmax be the makespan

 let fmin be the factory with minimum makespan.
 foreach job j in fmax
 try to exchange j with each job in fmin

 find the best exchange and denote the job in fmin by j1
 if both new makespans of fmin and fmax are smaller than Cmax
 exchange j and j1.
 flag←true
 break
 end
end

Fig. 2. The procedure of Insertion_Jobs, Move_Jobs and Exchange_Jobs.
Motivated by VND, we propose three new job

movement methods: Insertion_Jobs, Exchange_Jobs and
Move_Jobs. Insertion_Jobs is designed for a single fac-
tory while the others are used to move jobs between
factories. The procedures of them are shown in Fig. 2.
In the procedure of Insertion_Jobs, each job j1 of the
factory is selected accompanying with a random se-

lected job j2, and the two jobs are removed from the
factory. After that, j1 is reassigned at the best positions
and then j2. In the procedure of Move_Jobs, the facto-
ries with the maximal makespan and the minimal
makespan are found, denoted by fmax and fmin. We only
consider moving jobs in fmax to fmin instead of all other
factories because it will update fmax and fmin if a better

Published by Atlantis Press
 Copyright: the authors
 501

Gao and Chen

movement is performed. For each job j1 in fmax, all pos-
sible positions in fmin will be tried and moved to the best
position if the movement improves the makespan of the
DPFSP. Different from the method in Ref. 9, it will
break to perfrom the next iteration when an improve-
ment is made. Otherwise, it continues trying the next
job. The iteration will stop if all the jobs are tried but no
improvement can be made. In the procedure of Ex-
change_Jobs, similar to Move_Jobs, fmax and fmin are
found first. A job j1 in fmax is exchanged with each job in
fmin, and best exchange will be performed if it can im-
prove the makespan. Then new fmax and fmin will be
found for starting the next iteration. Iteration continues
until it can not be improved.
Local search
flag←true
foreach factory f

perform Insertion_Jobs on f
end
while flag do

perform Move_Jobs
perform Exchange_Jobs
if there is any factory f changed
 perform Insertion_Jobs on f
else
 flag←false
end

end
Fig. 3. The procedure of local search.

The procedure of local search is indicated in Fig. 3,
it is similar with VND method in Ref. 9, except the
three new job movement methods. Each factory is proc-
essed by Insertion_Jobs first, and then Exchange_Jobs
and Move_Jobs performed by marking the changed fac-
tories for further improvement by Insertion_Jobs. Con-
sider Child 1 in Example 1, our local search may per-
form as the following steps. 2 factories are processed by
Insertion_Jobs first. Suppose the result is that
f1={5,4,3,1} and f2 does not change, and f1 generates the
overall Cmax. Thus, Move_Jobs tries to move each job in
f1 to the 4 positions in f2, and Exchange_Jobs tries to
exchange each job in f1 with 3 jobs in f2. Let us also
suppose that Job 3 is inserted into f2 after Job 7, then
f1={5,4,1} and f2={6,7,3,2} has to be processed by In-
sertion_Jobs again because they are changed. The pro-
cedure of local search will be stop in a local minimum
when Move_Jobs and Exchange_Jobs cannot make any
change. It is noted that we can use the accelerations
developed by Taillard34 when implementing the three

sub-procedure. It can decrease CPU time greatly espe-
cially for large-scale instances.

3.4 An overview of GA_LS

Now we give the entire algorithm of GA_LS. Fig. 4
depicts the main procedure.

GA_LS
while stopping criterion is not satisfied do

evaluate fitness
apply local search on the best individual and a randomly selected
individual
update the best solution
apply selection operator
assign the best solution to a randomly selected individual
apply crossover operator
apply mutation operator

end
Fig. 4. The procedure of GA_LS

Local search is performed within the each iteration
after fitness computation with the aim at balancing jobs
sequences in the individuals and finding a minimum
solution in the local area. However, we only take the
best individual and a random chosen individual to per-
form the proposed local search, as some individuals
produced by crossover and mutation operators may be
not good enough. Note that it may converge too fast if
local search is only performed on the best solutions.
Moreover, the best solution is copied to the offspring by
assigning it to a random individual.

4. Experiments

To evaluate the performance of the proposed GA_LS,
intensive computational experiments are carried out. In
this section, the DPFSP benchmark problems are em-
ployed to test algorithms. The benchmark is available at
http://soa.iti.es, where only large-scale instances are
considered in the paper, as the number of jobs is up to
16 and the number of machines is only 5 at most in
small-scale instances. The set of large-scale instances is
extended from the benchmark of Taillard by adding the
number of factories F from {2,3,4,5,6,7}. The Taillard
instances are composed of 12 combinations of n×m, and
for each combination there are 10 different instances.
Each instance in DPFSP benchmark is combined with
six values to yield six instances of DPFSP benchmark,
so the number of total instances reaches 720.

In order to show the effectiveness and efficiency,
comparison between existing heuristics discussed in Ref.

Published by Atlantis Press
 Copyright: the authors
 502

A hybrid genetic algorithm

9 and the proposed GA_LS is carried out. Furthermore,
we also compare the proposed GA_LS with the genetic
algorithms associated with existing local search meth-
ods. Those genetic algorithms are tested with same pa-
rameters, where population size is set to 20, the maxi-
mum number of iterations is 100. They are decided on
the basis of the results of preliminary computational
observations. When the population size is up to 40, the
convergence speed of those algorithms may decrease to
a low value, while early convergence occurs when the
size is set to a small value (e.g. 10). For most instances,
when the number of iterations exceeds 100, the
makespan is improved slightly or converges to the local-
optimal solution, so the maximum number of iterations
is set to 100. The mutation probability is 0.1. The above
algorithms are incorporated in a C++ program and im-
plemented within VC++6.0. We perform all experi-
ments on a PC with an Intel Core Duo 2.4GHz CPU,
2GB RAM, running Windows XP.

4.1 Comparison of best-known solutions

The best solutions of the benchmark instances at
http://soa.iti.es are obtained by the heuristic approaches
mentioned in Ref. 9. As our GA_LS algorithm is initial-
ized by NEH and VND algorithms, GA_LS updates
most of the best solutions greatly. In this section, we
perform the GA_LS algorithm for all the 720 instances
10 times, and record the best solutions. Then, we evalu-
ate our results of best solutions produced by GA_LS,

and compare them with best-published results at
http://soa.iti.es. Among all the 720 instances, GA_LS
updates 692 best solutions. Relative percentage devia-
tion is employed to measure the results.

= 1 0 0a lg - o p tR P D
o p t

×

where opt is the best solution published and alg stands
for the best solution obtained by GA_LS.

Table 1 summarizes the results grouped by F as well
as the results grouped by each combination of n and m.
From Table 1, it can be seen that GA_LS provides bet-
ter solutions than all the algorithms mentioned in Ref. 9,
as RPD values for all groups are minus. We can also see
the total average RPD is -2.22%. GA_LS improves so-
lutions with F=2,3,4,5 a bit better than these with F=6,7,
where the average RPD values for F=2,3,4,5 are better
than the total average value. This is because GA_LS got
solutions with same objective as (or worse than) the
best-published results when solving some small in-
stances with F=6,7 and n=20. Among instances with
n=20, there are 12 instances unimproved out of 30 in-
stances when F is set to 7 and 7 instances when F is set
to 6, while the number is 1,2,3,3 for F=2,3,4,5 respec-
tively. However, it is worth noting that all the best solu-
tions of instances with n≥50 are improved by GA_LS.
In addition, among those 28 unimproved instances, only
6 solutions are worse than the best-published results.
Moreover, Table 1 also demonstrates GA_LS can get
minus RPD for each combination of n and m.

Table 1. Average relative percentage deviation (RPD) of GA_LS

F 2 3 4 5 6 7
RPD -2.26 -2.48 -2.36 -2.32 -2.08 -1.85
n×m 20×5 20×10 20×20 50×5 50×10 50×20
RPD -2.36 -1.91 -1.38 -2.75 -2.92 -2.44
n×m 100×5 100×10 100×20 200×10 200×20 500×20
RPD -1.87 -2.72 -2.41 -1.99 -2.14 -1.77

Average -2.22

4.2 Compare to other algorithms

In this subsection, we replace the best-published solu-
tions by our results produced by all the experiments in
this paper including experiments in the next subsection.
Many heuristic approaches have been tested in the Ref.
9 by Naderi and Ruiz. As those heuristics are extensions
of the well-known existing heuristics for solving regular
PFSP, the effectiveness of them mainly depends on that

of the corresponding original algorithms. We only con-
sider these four existing algorithms NEH1, NEH2,
VND(a) and VND(b) in our experiments. The reason of
this is those algorithms have far better performance than
other heuristic algorithms evaluated in Ref. 9. Because
there is no other meta-heuristics published to solve
DPFSP, we implement two similar genetic algorithms to
show our genetic algorithm with the presented local
search method is efficient, where the operations of GA

Published by Atlantis Press
 Copyright: the authors
 503

Gao and Chen

are same as the proposed one but they combine VND(a)
and VND(b) as local search methods respectively. They
are denoted by GA_VND(a) and GA_VND(b). All the
parameters in these two algorithms are same as GA_LS.

To compare the performance of these algorithms
mentioned in the former paragraph, NEH1, NEH2,
VND(a) and VND(b) are carried out once for all 720
instances, while GA_VND(a) and GA_VND(b) are car-
ried out 10 times for all 720 instances. Average CPU
time, average makespan, best makespan and worst
makespan of GAs are recorded.

First, we analyze RPD of the above experiment. Ta-
ble 2 indicates the results grouped by F. Average RPD
values of 7 algorithms are listed. At the bottom of the
table, the total average values of all F are reported as
well. As can be seen, GA_LS outperforms all the other
algorithms. Heuristic and local search algorithms have
bigger RPD than genetic algorithms. It is not surprise
that GA algorithms perform better than the NEH2 and
VND(a) because of the initialization. However, among
the three GAs, GA_LS performs best, while improve-
ments of GA_VND(b) are quite limited as the method
of VND(b) is not considerable compared with VND(a).
Moreover, it is interesting to note that the RPD of the
worst solutions got by GA_LS is even better than the
corresponding RPD of the best solutions produced by
GA_VND(a), where we can find 0.91% and 1.41% for
the total average RPD respectively. The best solution
found by GA_LS produces an average RPD of 0.23%.
Though GA_LS updates most of the best-known solu-
tions, the RPD is not very close to 0%. Note that the
new best solutions employed here are the best solutions
obtained by both GAs with 100 iterations and GAs with
limited CPU times (discussed in the next subsection).

Next, we give the RPD results grouped by the com-
bination of n and m, as well. Table 3 shows the results.

From the table, similar conclusion can be drawn as from
Table 2. For each combination, GA_LS performs best
regardless of the average, best and worst RPDs.

We also need to check whether the differences in
Table 2 and Table 3 made by those algorithms are statis-
tically significant, which can help us to draw a better
picture of the results. Three hypotheses (normality, ho-
mocedasticity and independence of the residuals) are
checked and satisfied. Fig. 5 shows the ANOVA of the
results, where mean plot with Tukey HSD intervals at
99% confidence level for the algorithm factor is de-
picted. From Fig. 5, we can clearly observe that the
GA_LS has a very good performance overcoming all
the remaining methods.

Next, we analyze CPU time of the experiment. The
results grouped by F are listed in Table 4, where CPU
time is in millisecond. Heuristic methods have the total
average CPU time below 50ms while GAs take more
time, where average times are larger than 2 seconds and
10.17 seconds for the algorithm GA_LS. The largest
CPU time 158.8 seconds is found for solving the in-
stance Ta_120_2 by GA_LS, where 500 jobs and 20
machines have to be scheduled. Though they needed far
more time than heuristic methods needed, the average
CPU times of them can be accepted in practice use. We
can also see CPU times decrease as the F grows. This is
consistent with the results produced by heuristic meth-
ods. Hence, the results indicate that the instance be-
comes easier to solve when F grows.

Among the three GAs, GA_LS needs the longest
CPU time, where it is about 2 times larger than CPU
time needed by GA_VND(a). So the local search
method presented takes quite long time to find better
solutions. To give a fair comparison between GAs, we
conduct the experiments in the next subsection.

Table 2. Average relative percentage deviation (RPD) of algorithms grouped by F
F Algorithms

 GA_VND(a) GA_VND(b) GA_LS

NEH1 NEH2 VND(a) VND(b)

Average Best Worst Average Best Worst Average Best Worst

2 5.47 3.72 2.64 3.09 1.58 1.18 1.98 2.17 1.79 2.49 0.58 0.17 1.01

3 6.38 3.83 2.94 3.33 1.92 1.59 2.26 2.58 2.30 2.80 0.52 0.16 0.88

4 7.08 3.93 2.88 3.48 1.86 1.57 2.18 2.65 2.44 2.81 0.61 0.27 0.97

5 7.03 3.52 2.81 3.27 1.84 1.55 2.11 2.67 2.52 2.79 0.57 0.23 0.86

6 7.16 3.45 2.71 3.24 1.72 1.44 2.00 2.58 2.46 2.65 0.60 0.29 0.90

7 6.98 2.93 2.21 2.76 1.38 1.14 1.60 2.17 2.10 2.20 0.55 0.27 0.84

Average 6.68 3.56 2.70 3.19 1.71 1.41 2.02 2.47 2.27 2.62 0.57 0.23 0.91

Published by Atlantis Press
 Copyright: the authors
 504

A hybrid genetic algorithm

Table 3. Average relative percentage deviation (RPD) of algorithms grouped by n and m
n×m Algorithms

 GA_VND(a) GA_VND(b) GA_LS

NEH1 NEH2 VND(a) VND(b)

Average Best Worst Average Best Worst Average Best Worst

20×5 7.18 4.58 3.77 4.40 2.49 2.46 2.54 3.66 3.66 3.66 0.82 0.74 0.87

20×10 6.11 3.39 2.79 3.05 1.66 1.54 1.75 2.71 2.67 2.73 0.75 0.57 0.94

20×20 4.53 2.72 2.00 2.60 1.37 1.34 1.42 1.86 1.84 1.93 0.60 0.45 0.74

50×5 9.54 4.23 3.36 3.93 2.43 2.28 2.55 3.20 3.12 3.23 0.48 0.24 0.74

50×10 8.13 4.35 3.42 4.02 2.26 1.86 2.59 3.11 2.90 3.26 0.74 0.13 1.33

50×20 6.38 3.81 2.78 3.37 1.90 1.55 2.23 2.50 2.32 2.65 0.64 0.11 1.14

100×5 7.67 2.80 2.07 2.49 1.38 1.09 1.67 1.98 1.91 2.04 0.44 0.10 0.80

100×10 7.80 3.78 2.81 3.33 1.84 1.39 2.28 2.51 2.20 2.76 0.60 0.09 1.11

100×20 6.05 3.64 2.70 3.19 1.58 1.07 2.13 2.34 1.91 2.67 0.56 0.12 1.03

200×10 6.75 3.13 2.36 2.77 1.32 0.83 1.88 2.12 1.74 2.34 0.43 0.10 0.80

200×20 5.51 3.51 2.40 2.89 1.33 0.85 1.83 2.03 1.60 2.36 0.44 0.08 0.80

500×20 4.56 2.82 1.90 2.29 1.01 0.69 1.37 1.60 1.33 1.84 0.34 0.07 0.61

G A _ LSG A _ V N D (b)G A _ V N D (a)V N D (b)V N D (a)N E H 2N E H 1

A lgo rithms

7

6

5

4

3

2

1

0

R
P

D

Fig. 5. Tukey HSD intervals at 99% confidence level for the algorithm factor

Table 4. Average CPU times of algorithms grouped by F (ms)
F Algorithms

 NEH1 NEH2 VND(a) VND(b) GA_VND(a) GA_VND(b) GA_LS

2 3.61 7.12 73.72 49.35 4,899.94 3,776.00 15,539.58

3 2.37 7.44 50.17 36.53 3,668.66 3,043.78 13,179.13

4 1.92 7.66 40.87 27.57 3,168.10 2,586.34 10,529.33

5 1.58 7.80 32.74 22.35 2,756.56 2,107.91 8,558.90

6 1.30 7.91 28.15 19.46 2,474.34 1,820.40 7,148.80

7 1.15 8.06 22.62 17.60 2,018.05 1,479.86 6,089.73

Average 1.99 7.66 41.38 28.81 3,164.27 2,469.05 10,174.24

Published by Atlantis Press
 Copyright: the authors
 505

Gao and Chen

4.3 Comparison of GAs with same CPU times

Taking into account differences in CPU times, we re-
cord average CPU times of the three genetic algorithms
for all the 720 instances. To conduct fair experiments,
we execute the three algorithms replacing the stopping
criterion of iteration times by time limits. As each in-
stance has three CPU times of the three genetic algo-
rithms, there are three groups of CPU times that can be
used as time limits. We employ each group as the time
limits and carry out those algorithms so that those algo-
rithms are executed with the same CPU times. Thus,
three groups of experiments are performed, where each
instance is solved using each algorithm by 10 runs. Av-

erage RPD values for best, worst and average makespan
of solutions are analyzed grouped by F, and the results
are listed in Table 5, 6 and 7, as well as the total average
RPD values.

From the three tables, we can see that GA_LS per-
forms best regardless of CPU times cost. With the help
of the proposed local search method, our genetic algo-
rithm has a fast convergence to good solutions. Since
GA_LS produces best RPD for each F, it can solve in-
stances with different f efficiently. We also observe that
even the RPD values of worst solutions obtained by
GA_LS are smaller than RPD values of best solutions
yielded by others regardless of the time limits used.

Table 5. Average RPD of genetic algorithms using CPU times of GA_LS as time limits
F Algorithms

 GA_VND(a) GA_VND(b) GA_LS

 Average Best Worst Average Best Worst Average Best Worst

2 1.55 1.05 2.12 2.14 1.67 2.52 0.49 0.14 0.94

3 1.80 1.28 2.27 2.55 2.14 2.87 0.53 0.15 0.91

4 1.78 1.32 2.25 2.62 2.27 2.86 0.60 0.26 0.95

5 1.67 1.28 2.08 2.61 2.35 2.78 0.55 0.21 0.90

6 1.66 1.27 2.05 2.57 2.39 2.68 0.65 0.28 1.04

7 1.29 0.95 1.62 2.14 1.99 2.20 0.52 0.25 0.85

Average 1.62 1.19 2.06 2.44 2.14 2.65 0.56 0.22 0.93

Table 6. Average RPD of genetic algorithms using CPU times of GA_VND(a) as time limits
F Algorithms

 GA_VND(a) GA_VND(b) GA_LS

 Average Best Worst Average Best Worst Average Best Worst

2 1.59 1.28 1.92 2.17 1.87 2.45 0.86 0.60 1.15

3 1.83 1.50 2.21 2.62 2.36 2.82 0.82 0.55 1.09

4 1.85 1.56 2.17 2.68 2.43 2.84 0.92 0.59 1.20

5 1.79 1.50 2.09 2.69 2.52 2.79 0.91 0.64 1.16

6 1.72 1.47 1.95 2.56 2.41 2.66 0.90 0.63 1.14

7 1.45 1.21 1.65 2.15 2.06 2.20 0.73 0.50 0.94

Average 1.70 1.42 2.00 2.48 2.28 2.63 0.86 0.59 1.11

Table 7. Average RPD of genetic algorithms using CPU times of GA_VND(b) as time limits
F Algorithms

 GA_VND(a) GA_VND(b) GA_LS

 Average Best Worst Average Best Worst Average Best Worst

2 1.65 1.29 1.98 2.15 1.84 2.44 0.86 0.61 1.15

3 1.93 1.65 2.26 2.58 2.32 2.79 0.97 0.74 1.24

4 1.86 1.60 2.17 2.66 2.45 2.81 0.93 0.66 1.22

Published by Atlantis Press
 Copyright: the authors
 506

A hybrid genetic algorithm

Table 7(continued). Average RPD of genetic algorithms using CPU times of GA_VND(b) as time limits
5 1.79 1.55 2.05 2.68 2.54 2.79 0.88 0.65 1.13

6 1.74 1.45 2.00 2.58 2.46 2.66 0.88 0.65 1.11

7 1.48 1.29 1.73 2.15 2.07 2.19 0.74 0.52 0.96

Average 1.74 1.47 2.03 2.47 2.28 2.61 0.88 0.64 1.13

5. Conclusions

The distributed permutation flowshop scheduling prob-
lem is a newly proposed scheduling problem, which is
in the set of NP-hard. Several heuristic and local search
algorithms have been presented in Ref. 9, as well as
MIP methods that can only solve small-scale instances
though they are exact methods. There is little attention
on meta-heuristic algorithms for DPFSP. Meanwhile,
meta-heuristic algorithms play an important role for
classical PFSP, and a great amount of works have been
published on this topic. In this paper, we proposed a
hybrid genetic algorithm with local search for minimiz-
ing the makespan of DPFSP. Our work can be summa-
rized as follows: a genetic algorithm has been deeply
studied, where the crossover operator was designed by
extending the one-point crossover for general GAs; lo-
cal search method was developed, where three local
search operations were proposed by improving the ex-
isting VND method. The intensive experimental results
revealed that our GA_LS performed much better than
other algorithms in the literature. It can find solutions
with better quality and even updated the best-known
solutions of most benchmark instances. The experimen-
tal results also revealed that the genetic algorithm with
the proposed local search method performs better than
genetic algorithms combined with the VND methods.
Experiments with same stopping criterions were carried
out, where same iteration times and same CPU times
were used as stopping criterions respectively. The re-
sults demonstrated GA_LS has the best RPD values
compared with those genetic algorithms. A weakness of
the proposed genetic algorithm is that when solving
some small-scale instances that n is 20, it did not per-
form very well, since there are some instances whose
best solutions can not be updated. But it has satisfactory
performance on other instances (n≥50). Furthermore,
since only simple crossover operator was investigated in
our work, a future work is to propose and study other
more efficient crossover operators for DPFSP with the
aim at improving performance of genetic algorithms.

We can see that meta-heuristics have achieved great
successes on classical PFSPs, so designing other meta-
heuristics to solve DPFSPs is also a necessary future
work.

Acknowledgements

We would like to thank the anonymous reviews for their
valuable comments which have helped us to improve
this paper. This work is partially supported by the Na-
tional Natural Science Foundation of China under Grant
No. 60775028, the Major Projects of Technology Bu-
reau of Dalian No.2007A14GXD42, and IT Industry
Development of Jilin Province.

References

1. E. Vallada, R. Ruiz. Cooperative metaheuristics for the
permutation flowshop scheduling problem. European
Journal of Operational Research. 193(2) (2009) 365–376.
doi:10.1016/j.ejor.2007.11.049

2. S. F. Rad, R. Ruiz, N. Boroojerdiana. New high perform-
ing heuristics for minimizing makespan in permutation
flowshops. Omega—International Journal of Manage-
ment Science. 37 (2009) 331–345. doi:10.1016/j.
omega.2007.02.002

3. J. Grabowski, M. Wodecki. A very fast tabu search algo-
rithm for the permutation flow shop problem with
makespan criterion. Computers & Operations Research.
31(11) (2004) 1891–1909.

4. C. Rajendran, H. Ziegler. Ant-colony algorithms for per-
mutation flowshop scheduling to minimize makespan/ to-
tal flowtime of jobs. European Journal of Operational
Research. 155 (2004) 426–438.

5. P.J. Kalczynski, J. Kamburowski. On the NEH heuristic
for minimizing the makespan in permutation flow shops.
Omega—International Journal of Management Science.
35 (2007) 53–60. doi:10.1016/j.omega.2005.03.003

6. M.R.Garey, D.S. Johnson, R. Sethi. The complexity of
flowshop and jobshop scheduling. Mathematics of Op-
erations Research. 1(2) (1976)117–129.

7. Felix T. S. Chan, S. H. Chung, P. L. Y. Chan: An adap-
tive genetic algorithm with dominated genes for distrib-
uted scheduling problems. Expert Syst. Appl. 29(2) (2005)
364–371. doi:10.1016/j.eswa.2005.04.009

8. H. Z. Jia, A. Y. C. Nee, J. Y. H. Fuh, Y.F. Zhang. A
modified genetic algorithm for distributed scheduling

Published by Atlantis Press
 Copyright: the authors
 507

Gao and Chen

problems. Journal of Intelligent Manufacturing. 14(3–4)
(2003) 351–362.

9. B. Naderi, R. Ruiz: The distributed permutation flowshop
scheduling problem. Computers & Operations Research
37(4) (2010) 754–768. doi:10.1016/j.cor.2009.06.019

10. E. Nowicki, C. Smutnicki. The flow shop with parallel
machines: A tabu search approach. European Journal of
Operational Research. 106(2-3) (1998) 226-253.
doi:10.1016/S0377-2217(97)00260-9

11. S. M. Johnson, Optimal two-and three-stage production
schedules with setup times included. Naval Research.
Logistics Quarterly. 1(1) (1954) 61–68.

12. E. Vallada, R. Ruiz. Genetic algorithms with path relink-
ing for the minimum tardiness permutation flowshop
problem. Omega—International Journal of Management
Science. 38 (2010) 57–67. doi:10.1016/j.omega.
2009.04.002

13. D.S. Palmer. Sequencing jobs through a multi-stage proc-
ess in the minimum total time: a quick method of obtain-
ing a near optimum. Operational Research Quarterly.
16(1) (1965) 101–107.

14. H.G. Campbell, R.A. Dudek, M.L. Smith. Heuristic algo-
rithm for N-job, M-machine sequencing problem. Man-
agement Science Series B—Application. 16(10) (1970)
630–637.

15. M. Nawaz, Jr. E.E. Enscore, and I. Ham. A Heuristic Al-
gorithm for the m-Machine, n-Job Flow-shop Sequencing
Problem .Omega—International Journal of Management
Science. 11(1) (1983) 91–95.

16. C. Koulamas. A new constructive heuristic for the flow-
shop scheduling problem. European Journal of Opera-
tional Research. 105 (1998) 66–71.

17. X. P. Li, Y .X. Wang, C. Wu. Heuristic algorithms for
large flowshop scheduling problems. In: Proceedings of
the 5th world congress on intelligent control and automa-
tion. (Hangzhou, China; 2004) pp. 2999–3003.

18. X. Dong, H. Huang, P. Chen. An improved NEH-based
heuristic for the permutation flowshop problem. Com-
puters & Operations Research 35(12) (2008) 3962–3968.
doi:10.1016/j.cor.2007.05.005

19. V. Armentano, D. Ronconi. Tabu search for total tardi-
ness minimization in flow-shop scheduling problems.
Computers & Operations Research. 26 (1999) 219–235.

20. S. Parthasarathy, C. Rajendran. A simulated annealing
heuristic for scheduling to minimize mean weighted tar-
diness in a flowshop with sequence-dependent setup
times of jobs—a case study. Production Planning & Con-
trol. 8(5) (1997) 475–483.

21. O. Engin, C. Kahraman, M. K. Yilmaz. A New Artificial
Immune System Algorithm for Multiobjective Fuzzy
Flow Shop Problems. International Journal of Computa-
tional Intelligence Systems. 2(3) (2009) 236–247.
doi:10.2991/ijcis.2009.2.3.5

22. C. Kahraman, O. Engin, I. Kaya, M. K. Yilmaz. An ap-
plication of effective genetic algorithms for Solving Hy-

brid Flow Shop Scheduling Problems. International
Journal of Computational Intelligence Systems. 1(2)
(2008) 134–147. doi:10.2991/ijcis.2008.1.2.4

23. T. Murata, H. Ishibuchi and H. Tanaka. Genetic algo-
rithms for flowshop scheduling problems. Computers &
Industrial Engineering. 30(4) (1996) 1061–1071.

24. B. Liu, L. Wang, Y. Jin. An Effective PSO-Based Me-
metic Algorithm for Flow Shop Scheduling. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B. 37(1)
(2007) 18–27.

25. B. Liu, L. Wang, Y. Jin. An effective hybrid PSO-based
algorithm for flow shop scheduling with limited buffers.
Computers & Operations Research. 35(9) (2008) 2791–
2806. doi:10.1016/j.cor.2006.12.013

26. B. Li, L. Wang, B. Liu. An Effective PSO-Based Hybrid
Algorithm for Multiobjective Permutation Flow Shop
Scheduling. IEEE Transactions on Systems, Man, and
Cybernetics, Part A. 38(4) (2008) 818–831.

27. G. Onwubolu, D. Davendra. Scheduling flowshops using
differential evolution algorithm. European Journal of
Operational Research. 171 (2006) 674–692.
doi:10.1016/j.ejor.2004.08.043

28. J.H. Holland. Adaptation in natural and artificial system.
(Ann Arbor, Michigan, The University of Michigan Press,
1975)

29. R.S. Kumar, N. Alagumurthi. Integrated total cost and
Tolerance Optimization with Genetic Algorithm. Interna-
tional Journal of Computational Intelligence Systems. 3(3)
(2010) 325–333. doi:10.2991/ijcis.2010.3.3.8

30. P.G. Kumar. Fuzzy Classifier Design using Modified
Genetic Algorithm. International Journal of Computa-
tional Intelligence Systems. 3(3) (2010) 334–342.
doi:10.2991/ijcis.2010.3.3.9

31. C. R. Reeves. A genetic algorithm for flowshop sequenc-
ing. Computers & Operations Research. 22(1) (1995) 5-
13.

32. L. Davis, Applying adaptative algorithms to epistatic
domains, in: Proceedings of the International joint con-
ference on artificial intelligence. (1985) pp. 162–164.

33. Z. Michalewicz. Genetic algorithms + data structures =
evolution programs, 3rd ed., (Berlin, Heidelberg:
Springer; 1996)

34. E. Taillard. Some efficient heuristic methods for the
flow-shop sequencing problem. European Journal of Op-
erational Research. 47(1) (1990) 65–74.

Published by Atlantis Press
 Copyright: the authors
 508

