
A Malware Behavior Analysis Method based on Coupling Degree
GUO Gang1, Wei Sheng-jun2

1School of Computer Science and Technology, Beijing Key Laboratory of Software Security
Engineering Technology,Beijing Institute of Technology; Beijing, China
2Beijing Key Laboratory of Software Security Engineering Technology

Beijing Institute of Technology
Beijing, China

guo_gang@126.com, shj_w@163.com

Keywords: obfuscation technique; Data fusion; coupling degree

Abstract. Aiming at the malware obfuscation technique, a new software behavior analysis method
is proposed in the paper. The instruction coupling degree is calculated through mapping and
associating the code analysis and log analysis to judge whether the instructions belong to the same
behavior and then obtain the instruction information and operation process of different behaviors.
The experiment proves that the method can effectively avoid the interference caused by the
obfuscation techniques with the characteristics of good fault tolerance and high analysis accuracy.

1. Introduction
With the development of the malware detection technique, malwares begin to improve their self-

protection ability through different techniques, in which obfuscation technique is a common one.
Thus, how to confront obfuscation technique is one of the key problems to be solved in malware
detection. Obfuscation technique includes code obfuscation and behavior obfuscation[1,2,3]. Code
obfuscation is mainly aimed at the static analysis with the purpose of obstructing the decompiling of
software and analyzing the codes, including code change and name rewriting. The former upsets the
normal format of codes on the premise of not changing the code function and replaces the normal
codes with those coded in special ways to make the analysis results of the decompiling tool contain
a large amount of error data or confused coding structure, or even make it fail to complete the
decompiling process. The latter rewrites a large number of function names, variable names and
constant names to be the insignificant characters. Then, even decompiling be completed, the results
are difficult to be understood and analyzed. Behavior obfuscation is mainly aimed at dynamic
analysis, including behavior change and behavior mixing. The former changes the key process of
malicious behaviors during operation to make them fail to operate as normal, or makes the key
process changeable in operation. The latter inserts other irrelevant behaviors in the operation
process of malicious behaviors or disperses malicious behaviors to other behaviors to reduce the
probability of being detected.

The research on malware behavior and obfuscation technique has achieved much progress,
including analyzing the source of information flow to avoid the information loss[4], obtaining
malicious behaviors by the use of control flow diagram and statistics[5], detecting malicious
behaviors through monitoring the code structure and semantics[6-7], coping with the decompiling
technique with the middle code and expert system[8], solving the obfuscation problem through the
abstract interpretation method[9-11], etc. Those methods contain many continuous reasoning and
tracing steps, so the analysis errors caused by obfuscation may be spread and expanded in the
follow-up analysis process and even make the analysis results fail to reach the minimum
expectation or fail to complete the analysis. To solve those problems, this paper proposes a method
which obtains the software behavior data through analyzing the coupling degree. It acquires the key

International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2015)

© 2015. The authors - Published by Atlantis Press 582

instruction code information and software operation information in malwares through the log and
source code analysis, maps the coupling degree among the calculation instructions and then obtains
the composition of the behaviors and actual operation process after analysis, which can effectively
reduce the interference of obfuscation technique on the analysis.

2. Method Design
2.1 Design Idea
 The use of obfuscation technique increases the difficulty of software analysis, but the following
characteristics of malwares after obfuscation can be used:

Code
Obfuscated

Code
Malicious
Behavior

Malicious
Behavior

M1

M2

M3

M4

M5

M1 M2 M3

M4 M5

M1

M2

M3

M4

M5

M1

M2 M3

M4 M5

Figure 1. code obfuscation diagram

(1)Although code obfuscation increases the difficulty of static analysis, the key process of
malicious behaviors will not change, as shown in Figure 1.

(2) After the behavior obfuscation, the operation process of malware is dispersed and upset. In
addition, the execution sequence of the instructions is changed through circulating, waiting and
jumping, leading to different processes of malicious behaviors in several times of operation.
However, since malicious behaviors must be realized through executing malicious codes and the
codes are fixed, no matter how malicious behaviors change in operation, the position of the
corresponding malicious codes in the software code is unchanged, as shown in Figure 2.

M1

M2

M3

M4

M5

M1

M2 M3

C

M4 M5

C

M1

M2

M3

M4

M5

M1

M2 M3

C

M4 M5

Operation process 1 Operation process 2

Figure 2. Behavior obfuscation diagram

(3) The instruction codes used by the behaviors with different purposes in the software are
usually unrelated in the separating state while the instruction codes in the same behavior are
interrelated. This phenomenon is particularly obvious between malicious behaviors and common
behaviors due to the significant differences in the type of instructions and the calling frequency. In
addition, even if malicious behaviors and common behaviors use the same instruction, they are
present separately in the codes or called through their own instructions.

(4) Malicious codes can be spread by being bundled to the normal software and operate with
them to cover the malicious behaviors. Althought the malicious codes and normal ones are bundled,
they are usually separate in operation , as shown in Figure 3.

583

N1

N2

N3

N4

N5

M1 N1 N2

M2 M3

N5

N3 N4

M4 M5

M1

M2

M3

M4

M5

malicious
behavior

normal
behavior

code
distribution

Figure 3. Bundled malware behavior diagram

 According to the above analysis, the design idea of the method is as follows: to analyze
independently the local data first and then make the overall analysis in order to avoid the error
spreading,; to associate the results of dynamic analysis and static analysis with the help of the fixed
correspondence between the instructions and the codes, due to the complementary property of the
data obtained by the dynamic analysis and static; one,; to calculate the coupling degree among
instructions and divide the codes on this basis to separate the codes of different behaviors, taking
advantage of the separating characteristic of different behaviors in operation,; to obtain the behavior
process data by connecting the behavior segments with the associated instruction information.
2.2 Method Design

The main steps of the method include log analysis, code analysis, data fusion, coupling degree
analysis of instruction codes and behavior segment connection, as shown in Figure 4.

log
Analysis

behavior
segment code

mapping

instructions
associations

ayalysis

relational
matrix A

relational
matrix D

source code
analysis

Combinatorial
analysis

coupling
degree
analysis

relational
matrix R interlinkage

behavior
 code set

behavior
process

Figure 4. Architecture for obfuscated malware analysis

The steps are as follows:
 (1) Log Analysis
In this step, the operation log of the software is obtained through dynamic analysis. Then, the log

is analyzed to obtain the relationship among instructions in the behaviors and the relative address
information of the instructions in codes. The fields to be recorded in the log include: instruction
name instr, recording time time, process ID pid, user ID uid, application name appid, etc. A special
field rva is added in the log to represent the relative address of the recorded instruction in codes.
Instrumentation technique can be used in the dynamic analysis. When instrumenting the instructions,
the document names where the instructions are located and their location information in documents
are obtained and the relative address value rva is calculated. Analyzing the field information in the
log can obtain the association relationship among the log records. This step just needs to analyze the
local associated record information, including the instruction information executed in sequential
order in the single process, end information transmitted by the data and end information of jumping
instructions. There is no requirement for the association length of the analysis result. The data
which can not be associated accurately are not processed elsewhere. After completion, a group of
behavior segment information Bf will be obtained, in which each behavior segment is an instruction
sequence Bfi which is executed in a sequential order and has no comple association with the outside.
Analyzing and calculating Bfi can get the association relationship among the corresponding
instruction codes and calculating the connection relationship of a group of Bf can get the relational
matrix R of an instruction code.

(2) Code Analysis
In this step, the association relationship among the instructions in codes Cf is obtained through

the static analysis to make up the path loss caused by the incomplete cover of the actual executing

584

path. This step just analyzes the local association of the codes. It neither analyzes multiple paths nor
requires the completeness of the analysis result. For the instructions which can be associated, the
relative address value rva in the codes should be recorded. After the step, a group of local
instruction association set Cf will be got with the expression form of Cfi ={Ins1，Ins2，Ins3...}，
Ins={instr，rva}. Similar to calculating the relational matrix R, an relational matrix D will be got
after calculation.

(3) Data Association Analysis
In this step, the data association analysis is made on the obtained relational matrix R and D to

calculate the complete association relationship among the instruction codes and express it with the
relational matrix A. A group of data R can be obtained from each dynamic analysis and a group of
data D can be obtained from each static analysis. All the information is independent, in which the
instruction name instr may be repeated, but the relative address value rva of each instruction code is
unique and can be taken as the media connecting all groups of data in the data fusion. Since the
association relationship of the relative address value rva of the instruction code can be re-connected,
all the association information R and D can be fused to generate a complete relational matrix A.

(4) Coupling Degree Analysis on Instruction Codes
This step uses the relational matrix A to calculate the coupling degree of instruction codes, and

analyze whether each instruction code belongs to the same behavior and then process the instruction
codes. The corresponding instruction codes to different behaviors are separated and the
corresponding instruction codes to the same behavior are gathered. In calculation, the association
condition among all instructions and the possible error association in the previous calculations
should be considered, so as to reduce the influence caused by the above error data. After calculation,
a group of sets B can be obtained and the elements in each set Bi represents the instruction code
used by the same behavior

(5) Behavior Analysis
The purpose of this step is to take advantage of the corresponding instruction code segments to

all behaviors to extract all segments of the same behavior and interlink them to obtain the behavior
process data in the actual operation. The instruction code information set B of each behavior has
been obtained in the previous calculation. Although the behavior segments obtained in the log are
separate, when an instruction belongs to the same set Bi in two behavior segments, these two
behavior segments can be inferred as the same behavior. Then, these two segments can be
connected according to the operation time and other information. The operation process of each
behavior can be obtained after analyzing and connecting the behavior segments.

3.Key Algorithm Design and Realization
3.1 Mapping Relationship Calculation between Behavior Segments and Instruction Codes

 Behavior segment refers to the instruction sequence which is executed in a sequential order and
has no complicated relationship with the outside. It’s expressed as below:
 Bf={Ins1，Ins2，Ins3...}，Ins={instr，rva，time，pid，uid，appid...}

Bf represents the behavior segment; Ins represents the corresponding information of an
instruction; instr is the instruction name; rva is the relative address value of the instruction in the
source code; time is the operation time of the instruction; pid refers to the process ID; uid refers to
the user ID; and appid refers to the application ID.

Several behavior segments can be obtained through analyzing the operation log:
Bf1={Ins1,1，Ins1,2，Ins1,3... Ins1,p}
 Bf2={Ins2,1，Ins2,1，Ins2,3... Ins2,q}
 ...
 Bfn ={Insn,1，Insn,1，Insn,3... Insn,r}

The first is to map the instruction-code addresses and establish the mapping relationship Ins-
rva between Ins and rva:
 Ins-rva1: {Insm1,n1 , Insm2,n2 , Insm3,n3 ... } -> rva1

585

 Ins-rva2: {Insp1,q1 , Insp2,q2 , Insp3,q3 ... } -> rva2

 。。。
 Ins-rvar: {Inss1,t1 , Inss2,t2 , Inss3,t3 ... } -> rvar

The mapping algorithm of the instruction-code addresses is as below:
Input Bf
For each Bfi in Bf

 For each Insi,j in Bfi
 If Insi,j .rva exist in Ins-rvar
 Add Insi,j -> rva in Ins-rvar
 Else
 Create Ins-rvar
 Add Insi,j -> rva in Ins-rvar
Output Ins-rva

After obtaining the mapping relationship between the code and the code address, the mapping
relationship Bf-rva between behavior segments and code addresses is established:
 Bf-rva1: Bf1 -> {rva1,1，rva1,2，rva1,3... rva1,p}
 Bf-rva2: Bf2 -> {rva2,1，rva2,1，rva2,3... rva2,q}

 Bf-rvan: Bfn -> {rvan,1，rvan,1，rvan,3... rvan,r}

The algorithm of establishing the mapping relationship between behavior segments and code
addresses is as below:
Input Bf and Ins-rva
For each Bfi in Bf
 For each Ins-rvaj in Ins-rva
 If Bfi .Ins == Ins- rvaj.Ins
 If exist Bf-rvai
 Add rvaj In Bf-rvai
 Else
 Create Bf-rvai
 Add rvaj In Bf-rvai
Output Bf-rva
3.2 Instruction Code Association Calculation

Instruction code association calculation is to calculate the direct correlation degree of each
instruction with others. It’s expressed by the relational matrix R:

R = �

𝑅𝑅11 𝑅𝑅12 . . . 𝑅𝑅1𝑛𝑛
𝑅𝑅21 𝑅𝑅21 . . . 𝑅𝑅2𝑛𝑛

. . .
𝑅𝑅𝑚𝑚1 𝑅𝑅𝑚𝑚1 . . . 𝑅𝑅𝑚𝑚1

�

 Rij is used to represent the correlation between the corresponding instruction to rvai and rvai; Rij
is the number of correlation times in the operation process.

The algorithm of establishing the relational matrix R is as below:
Input Bf-rva

Create matrix R
For each Rm,n
 Rm,n = 0
For each Bf-rvai
 For each rvai,j
 If rvai,j is related to rvai,k
 Rj,k = Rj,k + 1
Output R
3.3 Combination of Relational Matrix

Several relational matrixes R can be obtained through repeatedly analyzing the log records;

586

relational matrix D can be obtained through the source code analysis; Combining those matrix data
can obtain the more accurate relational n matrix A. The algorithm is as below:

Input R，D，
Create matrix A
For each Amn in A
 Amn = 0
For each R' , R'' in R
 If R'ij.rvai== R''pq.rvap && R'ij.rvaj== R''pq.rvaq
 If exist Amn &&
 Amn.rvam == R'ij.rvai && Amn.rvan == R'ij.rvaj
 Amn == R'ij + R''pq
 else
 Add Amn
 Amn.rvam = R'ij.rvai
 Amn.rvan = R'ij.rvaj
 Amn == R'ij + R''pq
For each Dst in D
 If Amn.rvam == Dst.rvas && Amn.rvan == Dst.rvat
 Amn == Amn + Dst* ratio
Output A
3.4 Coupling Degree Analysis of Instruction Codes

The coupling degree of the instruction sets of different behaviors is often significantly lower than
thatof the same behavior. Thus, the differences in the coupling degrees of instructions can be used
to distinguish the corresponding instruction code set to different behaviors. The input is the
instruction code relational matrix A and the output is a group of sets B. The element in each set Bi
represents the corresponding instruction code to the same behavior. The algorithm is as below:

Input A
Create set B
For each Aij in A
 If Aij > thershold
 If Aij.rvai exist in Bm
 Add Aij.rvaj in Bm
 Else Create set Bm
 Add Aij.rvaj in Bm
 If Aij.rvai exist in Bn
 Combine Bm and Bn
Output B
3.5 Interlinkage of Behavior Segments

Using the corresponding instruction code set B to the same behavior can recombine the discrete
behavior segments Bf obtained from the log analysis to generate a more complete behavior process.
After calculation, a group of sets C can be obtained. The element in each C represents the operation
record of the same behavior. The algorithm is as below:

Input Bf , B
Create set C

For each Bf
 For each Bp in B
 If Bp.rvam exist in Bfi
 && Bp.rvan exist in Bfj
 If Bfi∈Cs && Bfi∈Ct
 Cs = Cs + Ct
 delete Ct
 Else Create Cs Or Ct

587

 Cs += Bfi Or Ct += Bfj
 Cs = Cs + Ct
 delete Ct
Output C

4.Experiment
4.1 Experimental Setup

The prototype system was realized with this method in Android platform. The environment of
the experiment was 2.4G Xeon X3430，16GB Rom，Ubuntu13.04，Android version 4.0.2，
Kernel version 2.6.29，ADT version 22.01. Malicious samples selected in the paper were from
several secure websites (including bbs.kafan.cn, www.52pojie.cn, etc.), a total of 137. The code
obfuscation technique (including the built-in obfuscation function of android) was applied to all
samples, in which 32 were confirmed to apply the behavior obfuscation technique. The
instrumentation tool APImonitor and automatic test tool Monkeyrunner were used in the dynamic
analysis and IDA Hex-Rays ARM Decompiler was used in the static analysis.
4.2 Experimental Data and Analysis

10 samples were selected first to do the threshold, dynamic analysis time and frequency
experiments. Dynamic analysis was carried out for 10 or 30 times, each 5 min or 15 min. 4 groups
of experiments were done. The thresholds in the coupling degree analysis were 2, 5, 10 and 25,
respectively. The results were shown in Figure 5.

Figure 5. Experiment result

It can be found after analyzing the data in Fig.4 that the selection of thresholds directly affects
the analysis results. In order to improve the accuracy and efficiency of the analysis, the single
analysis time of the sample can be reduced and the number of tests can be increased. The number of
tests decides the number of the matrix R and restricts the selection scope of thresholds in the
analysis and calculation. Low threshold may make different behaviors mixed without accurate
distinction while high threshold may divide the same behavior into several behaviors by mistake.
According to the experimental results, the effect is the best when the threshold is 0.3 times more
than the number of times.

The follow-up experiment selected the number of dynamic test times to be 30 and the test time to
be 5 min for each and corrected the threshold to be 9. The statistical results after testing 137
samples were shown in Figure 6. The code and behavior log of each sample could be divided into
several parts.

588

http://www.52pojie.cn/

Figure 6. Experiment result statistics

An experimental sample was selected for the specific analysis. The sample was a little game
software bundled with malicious codes. The malicious behaviors included downloading other
softwares automatically, popping up a large number of advertisements and stealing the IMEI and
contact information of the mobile phone. In the experiment, the corresponding original software
was downloaded for test and contrast. After analysis, the code of the malicious sample was divided
into 17 subsets while that of the original software was divided into 8 subsets. It could be found by
comparing the subsets that a large number of sensitive instructions constituting the malicious
behavior was concentrated in 5 subsets. After associating the behavior segments and obtaining the
behavior process data, it was found that the data basically covered the key process that the
malicious behavior actually executed.At the same time, it was found after analyzing the original
software that the IMEI of the mobile phone would also be obtained in the operation of the software.
Thus, there were 2 obtaining operations each time the malicious sample operated. In the analysis
results, those two instruction codes can be accurately classified to different subsets rather than being
judged by mistake due to the same instruction name. The similar situation occurred for several
times. Despite for three kinds of malicious behaviors of the malicious sample and 5 resulting
subsets, malicious codes have been separated from normal codes and the key process has been
extracted from the log. Thus, the use of obfuscation technique will exert no influence on the follow-
up analysis.

5. Conclusion
To solve the difficulty in analyzing the obfuscated malware, this paper proposes a malware

behavior analysis method based on coupling degree which realizes the data association by the use of
the fixed mapping relationship between instructions and code addresses and distinguishes different
behaviors according to the separation characteristics to obtain the code information of the behaviors
and the actual operation process information. The experiment proves that the method has good
effect in analyzing the obfuscated malware. Next, how to improve the accuracy of judging the
belongings of instructions and behaviors will be studied to get the more precise analysis results.

References
[1] Schrittwieser Sebastian Covert computation: Hiding code in code for obfuscation purposes

Source: Proceedings of the 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, p529-534, 2013

[2] Linn Cullen; Debray Saumya Obfuscation of executable code to improve resistance to static
disassembly Source: Proceedings of the ACM Conference on Computer and Communications
Security, p290-299, 2003

[3] Schrittwieser S.; Katzenbeisser S. Code Obfuscation against Static and Dynamic Reverse
Engineering Source: Information Hiding 13th International Conference, IH 2011. p270-84,
2011

[4] Kinder J. Towards static analysis of virtualization-obfuscated binaries Source: 2012 19th
Working Conference on Reverse Engineering (WCRE), p61-70, 2012

589

[5] Kruegel, C.; Robertson, W.; Valeur, F.; Vigna, G. Static disassembly of obfuscated binaries
Source: Proceedings of the 13th USENIX Security Symposium, p255-70, 2004

[6] Udupa, Sharath K.; Debray, Saumya K.; Madou, Matias Deobfuscation reverse engineering
obfuscated code Source: Proceedings - Working Conference on Reverse Engineering, WCRE,
v2005, p45-56, 2005

[7] Joonsoo Jeon; Taisook Han Dynamic Analysis of Virtualization-obfuscated Binary
Executables Source: Journal of KIISE: Software and Applications, v40, n1, p61-71, Jan.
2013

[8] Smith, A.J.; Mills, R.F.; Bryant, A.R.; Peterson, G.L.; Grimaila, M.R. REDIR: Automated
static detection of obfuscated anti-debugging techniques Source: 2014 International
Conference on Collaboration Technologies and Systems (CTS), p 173-80, 2014

[9] Visaggio, Corrado Aaron; Pagin, Giuseppe Antonio; Canfora, Gerardo An empirical study of
metric-based methods to detect obfuscated code Source: International Journal of Security and
its Applications, v7, n2, p59-74, 2013

[10] Madou, M.; van Put, L.; de Bosschere, K. Understanding obfuscated code Source: 14th IEEE
International Conference on Program Comprehension, p4 pp., 2006

[11] Lakhotia, A.; Kumar, E.U. Abstracting stack to detect obfuscated calls in binaries Source:
Fourth IEEE International Workshop on Source Code Analysis and Manipulation, p17-26,
2004

590

