
Research on software defect predict model based on JCUDA_BP
algorithm

Chun Shan, Lei Dong, Changzhen Hu, Liang Zhang, Jingfeng Xue
School of Software, Beijing Institute of Technology

Beijing, China
sherryshan@bit.edu.cn, 294055164@qq.com, chzhoo@bit.edu.cn, 56279329@qq.com,

xuejf@bit.edu.cn

Keywords: security; defect predict; JCUDA_BP algorithm

Abstract. For the long time computation and the poor learning effect in application of BP algorithm
in software defect predict model, an improved BP algorithm is presented in this paper. The
improved algorithm combines the JCUDA technology and the BP algorithm, by learning the sample
decomposition, multithreading and CPU-GPU processing mode, both learning speed and predicting
time are optimized for the software defect predict model based on BP algorithm. The experimental
results show that the improved JCUDA_BP algorithm optimizes the learning process, especially for
the larger samples. Also, when the hidden node number reaches a certain number, the effect of the
optimized algorithm is much better than the traditional BP algorithm.

Introduction
Software defect refers to software error, which will cause a reduction in functionality or

performance of the software system so that the software can’t meet of the users’ basic requirement.
Software defect prediction means predicting the software defect that may exist, it judges which
module of the software system contains error that not having been found [1]. Recent years, with the
software system being widely used continuously, an increasing number of unknown errors in
software system are exposed. Meanwhile, the enormous challenges facing software reliability also
prompting researchers to focus on research for software defect prediction. Therefore, how to
establish reasonable software defect predict model becomes the focus of recent research.

Software defect prediction technology can be divided into static type and dynamic type [2].
Currently, the research on software defect predict model is deepening in the major research
institution. Parag C. Pendharkar proposed a learning problem in a software defect predict
model(SDPMLP, a software defect prediction model learning problem)[3], the research shows
SDPMLP is a complex optimization problem in factorial calculation. For simple software defect
predict model learning problems, PNN (probabilistic neural network) has better effect. For complex
software defect predict model learning problems, the PNN algorithm based on improved simulated
annealing algorithm has better effect. Kazu Okumoto presents a software defect predict model,
using the method of modifying feature weighting to optimize the software defect predict result[4].
Stefan Lessmann and some other people use NASA software information dataset to test and
evaluate software defect predict result [5]. The research shows that the distribution of software
defect can be acquired in various software modules based on a measure of software attributes for
expression. The research shows the expression of software attributes based on measure has access
to the distribution of software defects in various software modules. From the above three typical
study, currently, the project based on software defect predict model mainly aims at deeper research
and verification on the neural network and multilayer perceptron network. In addition, for these
traditional methods, some algorithms like PNN algorithm and simulated annealing algorithm is
usually being introduced to improve the traditional algorithms.

Since 2012, there are more and more research on software defect predict model research based
on BP algorithm technology, researchers made varying degrees of transformation of BP algorithm,
also, they are trying to adjust algorithm to ensure BP algorithm can be applied to the software defect

International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2015)

© 2015. The authors - Published by Atlantis Press 615

predict model readily and effectively. Currently, studies on BP algorithm have received certain
recognition in software defect predict model, but how to improve the software defect predict model
based on BP algorithm reasonably will be the research focus.

Previous studies have shown that during the process that applying BP algorithm to software
defect predict model, BP algorithm will produce excessive number of iterations and long
computation time [6]. Therefore, this paper puts forward using JCUDA technology to improve the
BP algorithm and the new method will speed up the calculation of BP algorithm effectively ,also it
will optimize the BP algorithm based software defect predict model effectively.

Software defect predict model based on BP algorithm.
Software defect predict model based on BP algorithm is a software defect predict model which is

established on the basis of software information and artificial neural network, reflecting if the
software module information has defective estimate and judgment for the defect [7]. Software
defect predict model based on BP algorithm consists of an input layer, a hidden layer and an output
layer. The model is shown in Fig. 1.

Input
node1

Input
node3

Input
node2

Output
node1

Hidden
node2

Hidden
node3

Hidden
node1

Input value 1

Input value 2

Input value 3

Output value 1

Figure 1. Software defect predict model network structure based on BP

As the Fig. 1 shows, the input node information represents information about the software
modules, such as recurring number and number of judgement, the output indicates whether the
module has a defective state. The input node information is shown in (1).

 (1)
 represents a set of learning sample information, represents the value of the module

information that is described by the -th software information.
The output node information is shown in (2).
 (2)
In the process that based on software defect predict model application, output node only has one

output information, the information represents if there is an error in the module, thus output node
has only one output value. In practical application process, research on software defect predict
model based on BP algorithm needs to determine whether the node has an error on the basis of the
output value. Calculation result closing to 0 indicates no error and the result closing to 1 indicates
some error.

The learning process of defect predict model based on BP algorithm is on basis of the learning
sample S, and it acquires the stable weight
between the input layer and the hidden layer and the stable weight between the hidden layer and the
output layer. In the implementation process, the hidden layer uses S-function as stress function
setting, as (3) shows.

 (3)
As Equation (3) shows, represents a positive integer parameter that controls the steepness of S

616

function, represents the input value using this function. By the S function, extrusion effect can be
achieved effectively and larger input value can be mapped to a small range conveniently, effectively
and quickly. S function is also known as extrusion function as its effect. In addition, BP algorithm
requires using the derivative in the process of adjusting weight reversely. S function can get the
derivative conveniently, and the derivative of the S function can associate with the S input value
accurately. Derivative of S function is shown in (4).

 (4)
As Equation (4) shows, S(z) can be obtained with the inputted computed result, and it achieves

convenient calculation of its derivative.
The defect predict model algorithm based on BP algorithm uses the data of software defect

model as the learning sample of BP algorithm. With this BP neural network learning data, the
prediction for unknown software data will get better effect.

Software defect predict model based on JCUDA_BP algorithm.
Software defect predict model based on JCUDA_BP algorithm is an attempt to combine the

JCUDA technology with BP algorithm. By learning sample decomposition and multi-threaded
processing and CPU-GPU processing mode, the learning speed of the learning software defects
model process is optimized.

CPU/GPU technology is a kind of collaborative computing method that has huge advantage
currently, generally there are two ways, one is managing GPU with CPU, the other way is making
GPU and CPU calculate together and GPU and CPU will undertake a part of the complex
calculation respectively. The former way makes full use of the computational advantages
of GPU, but it is a waste of computing resources of CPU, while the later way releases the
computing power of the GPU and CPU well. The release is the future direction of the development
of collaborative parallel computing [8].

Therefore, while using JCUDA to make BP algorithm optimization design, we need to consider
collaborative way of CPU/GPU. Obviously, the latter that both the CPU and GPU undertake some
part of the computational work has larger advantage than the other method. The computation with
strong parallel is handles by GPU. CPU is responsible for both managing GPU and undertaking part
of the non-parallel computation. Thus, the computing power of GPU / CPU can be stimulated
effectively and the software defect predict model based on JCUDA_BP algorithm has higher
computational efficiency.

First of all, JCUDA_BP algorithm optimizes the inputting stage of learning sample. If the
learning sample is and the number of the sample is for software defect predict model, it can be
shown in (5).

 (5)
JCUDA_BP algorithm divides learning samples into groups in CPU, and the learning sample

can be written as (6).
 (6)

In Equation (6), each corresponds to learning samples. When the calculated value is not an
integer, the grouping stage will automatically round down the value and get a parameter called to
represent the value. In Equation (6), the -th group of data samples can be expressed using (7).

 (7)
When it comes to the last group in the sample, it will take all remaining samples automatically

to ensure the accuracy and integrity of grouped data.
Then, software defect predict model based on JCUDA_BP algorithm starts multiple threads on

the GPU, calculating the average error value respectively on the sample set S that is shown in (7).
Error of all samples is expressed as (8).

 (8)

617

In Equation (8), represents the calculated error value after the combination and calculation of
the -th sample group, represents the calculation error of the mean value of the whole sample set.

Then, basing on JCUDA_BP algorithm, adjust BP neural network weights with the reversal error
of BP algorithm. After the adjustment, verify if the range of error value meets the requirement. If
the error still cannot meet the accuracy requirement of the BP algorithm, the iteration will repeat
until the result reaches best learning effect.

The software defect predict algorithm that combined with JCUDA_BP algorithm uses multi-
threading and data grouping to speed up the effect of BP algorithm. However, in the actual use of
the process, realizing the algorithm also need a computing monitor thread to ensure the calculation
effect of each thread grouping sample. Once there is a sample that can’t calculate the result, the
monitor will discover, reminding CPU that do not calculate the average error for this sample. If the
average error is greater than the error standard, then give up the thread sample calculation result and
adjust the value of the weight of neural network. On the contrary, the thread waits for calculation
results of the learning sample thread. If this thread has no response for a long time, then restart the
calculation thread to ensure the accuracy of final average error value calculation.

Software defect predict model based on JCUDA_BP algorithm uses similar network structure to
BP network, optimizes and simulates the runtime of the software defect prediction by the JCUDA
algorithm. The process is shown in Fig. 2. In Fig. 2, Thread 1 to thread m is calculated in the GPU.
CPU undertakes the task of error solution and verification, and also realizes the work of GPU
running monitoring.

Sample
group 1 Thread 1

...

Sample
group n

...

Thread n

Error solving
and verifying

Monitor
thread

Input GPU

Input GPU

GPU into the CPU to calculate

Monitor thread running situation

Feedback the condition weight

Figure 2. The process diagram based on JCUDA_BP.

The learning process of the study of software defect information based on JCUDA_BP algorithm
is as follows:

a) Complete BP neural network initialization in CPU and GPU.
b) Realize learning process with BP by JCUDA programming technology.
c) Using the calculation results of CPU storing BP algorithm.
d) Analysis and monitors the effect of result of the data in GPU by CPU

Realizing BP algorithm with JCUDA is to make the iteration calculation process inside GPU, use
CPU to analysis the error of the learning process, and adjust edge weight in GPU neural network
topology.

618

Experimental analysis

B. Experimental data and environment
This paper mainly analyzes the computation efficiency of software defect prediction for standard

BP algorithm and use GPU to deal with the experimental data. In order to obtain more obvious
experiment effect and reflect the GPU processing effect for large data, NASA’S MDP (metric data
program) dataset which is being used widely in the software defect research is chosen to be the
experimental data. The data that being used in the experiment is shown as the table I:

TABLE I. EXPERIMENTAL DATA OF SOFTWARE DEFECT PREDICT MODEL BASED ON BP ALGORITHM
AND JCUDA_BP ALGORITHM

Nam
e

Traini
ng File

Size
(KB)

Number
of

sample
 data

Validat
ion file

size
(KB)

Numbe
r of

validat
ion

sample
s

chosen
CM1 47 344 45 327
JM1 722 9593 607 7782
KC1 141 2096 88 1183
KC3 29 200 28 194
MC1 946 9277 234 1988
MC2 19 127 19 125
MW1 35 264 34 253
PC1 99 759 92 705
PC2 181 1585 90 745
PC3 145 1125 139 1077
PC4 169 1399 158 1287
PC5 1637 17001 219 1711

In general, the study data’s learning number of input is different in software defect models, while
the output has 2 types indicating if there is defect. Therefore, the iterations and the number of
hidden nodes in the second layer have greater influence on the software defect predict model based
on BP. The experiment aiming at BP algorithm efficiency needs to adjust the number of hidden
nodes and investigate how the number works for final calculation time. In the experiment, the
number of hidden nodes is set to 1024, 2048, 8192, 10384, 32768. The number of hidden nodes
affects the final number of iterations. Then collect the runtime respectively to analysis of the
influence of different virtual nodes number on BP model.

The experiment uses Windows2007 operating system and the memory size is 4GB. It uses
Eclipse as programming environment, realizes the GPU and CPU programming under JCUDA
technology based on Java. The experiment combines GPU and CPU and increase the processing
efficiency of BP algorithm. GPU’s maximum number of multi-thread in each module is 10536 and
maximum number of threads in each module is 1024, the largest memory pool is 2147483647 bytes.

C. Experiment result and analysis

This paper writes from the following two aspects, one is “the contrastive analysis between the
software defect predict based on BP and the software defect predict based on JCUDA_BP”, the
other is “the analysis of the software defect predict influence of the different hidden node number
on JCUDA_BP ”, illustrates the different between software defect predict model based on
JCUDA_BP algorithm and software defect predict model based on BP algorithm, elaborates the

619

problems and the influence that may be produced in the process of using JCUDA_BP.
1) Experimental results and analysis of rate improving
The experiment shows, under the same experimental data, if the computation time of different

dataset will change obviously using BP algorithm that is improved with JCUDA technology. The
computation time, computation time difference and the optimized ratio is shown in Table II.

TABLE II. COMPARISON BETWEEN THE SOFTWARE DEFECT PREDICT TIME BASED ON BP AND THE
SOFTWARE DEFECT PREDICT TIME BASED ON JCUDA_BP

Name
Numb-er of

sample
 data

CPU computati-
on time (ms)

GPU comput-
ation time

(ms)

Computa-tion
time difference

(ms)

Optim-ized
ratio (%)

CM1 344 29914 31709 -1795 -6.00
JM1 9593 1064892 851914 212978 20.00
KC1 2096 272858 226472 46386 17.00
KC3 200 26150 26935 -785 -3.00
MC1 9277 1329638 1077007 252631 19.00
MC2 127 19456 19651 -195 -1.00
MW1 264 35943 36123 -180 -0.50
PC1 759 93170 76399 16771 18.00
PC2 1585 210509 176828 33681 16.00
PC3 1125 137306 119456 17850 13.00
PC4 1399 174587 141415 33172 19.00
PC5 17001 3563642 2815277 748365 21.00
As Table II shows, for dataset PC5, the computation time with software defect predict model

optimized by JCUDA time is smaller than software defect predict model based on BP algorithm. As
for the sample CM1, using the software defect predict model optimized by JCUDA makes the
learning time longer. The number of learning sample of PC4 and PC2 is closing and optimization of
learning process is also closing..

According to the Table II, when using JCUDA to improve BP algorithm, the relationship of the
learning ratio, sample number, algorithm are as follows:

(1) When the number of learning samples of software defect data is large, the learning time of
software defect predict model based on BP and the learning time of software defect predict model
based on JCUDA_BP will both increase with the adding of learning samples.

(2) When the number of learning samples of software defect data is small, the learning time of
software defect predict model based on BP will smaller than the learning time of software defect
predict model based on JCUDA_BP.

(3) With the adding of the learning sample of the software defect model, the optimized ratio of
the learning process of the modified BP algorithm based on JCUDA will increase. It means that the
effect of BP algorithm modified by JCUDA is better with more learning samples.

(4) During the process of achieving BP algorithm based on CPU, excessive learning sample will
cause learning failure. This phenomenon is mainly due to the presence of memory overflow in
calculation process of program execution. Realizing BP algorithm with JCUDA technology will
effectively reduce the probability of the phenomenon of memory overflow. To solve the memory
overflow, distribute the software defects module learning sample information to different threads
during JCUDA programming.

With the above experiment, for the MDP software model information dataset, BP algorithm
modified by JCUDA can optimize the learning process for a certain degree and acquire better
optimization. However, this optimization process performs obviously when the number of software
defect model learning sample is large. The optimization is not good if the number is small.

2) The result and analysis for hidden nodes experiment
When the number of initial input nodes is same, sample data is same and learning efficiency set

is same, if the number of hidden nodes based on JCUDA_BP model increases, then use JCUDA_BP

620

algorithm to learn the data of PC5 learning dataset. Execution time is shown in Table III.

TABLE III. COMPARISON OF PROCESSING TIME OF GPU\CPU WITH THE NUMBER OF HIDDEN NODES IN
PC5

The number of
hidden nodes

Start-up time of GPU
（ms）

Runtime of GPU
（ms）

Time of CUP（ms）

1024 4732 46601 37392
2048 3162 51516 50027
8192 3910 170976 176077

16384 5375 323316 337000
32768 4929 628398 740592

As seen from Table III, when increasing the number of hidden nodes, the time of running BP
software defect simulation algorithm on GPU and CPU will increase. When the number of hidden
nodes is fewer, CPU processing time will be shorter. The GPU computation also need the start time
of GPU, which will extend the final running time of GPU. However, after subtracting the start time
of GPU, the running time of GPU on BP algorithm is close to the CPU time. When the number of
hidden node increases again, GPU start time will fluctuate, but still remaining at a relatively stable
range. With the increase of the number of hidden nodes, GPU computing time will be better than
CPU time. When the number of hidden nodes reached an order of magnitude, the learning effect of
optimized BP algorithm under GPU is much better than BP algorithm under CPU.

Conclusion
According to “software defect predict model experiment based on BP/JCUDA_BP” and

“software defect predict model experiment using JCUDA_BP based on different number of hidden
nodes”, software defect predict model based on JCUDA_BP can handle multiple learning samples
of training samples quickly and accurately and it will also speed up the computation time
effectively. When increasing the number of hidden nodes, JCUDA_BP algorithm is still able to
obtain a shorter processing time and speed up the operation efficiency. The research on software
defect predict model based on JCUDA_BP combines the new thoughts of parallel processing and
GPU technology, making the use of BP algorithm in the process of software defect prediction more
quickly and efficiently, enabling JCUDA_BP’s rapid learning of software defect data and ensuring
the availability between BP algorithm and software defect prediction model.

Acknowledgment
This work was supported by the Key Project of National Defense Basic Research Program of

China (Grant No. B1120132031) and the Ph.D. Programs Foundation of Ministry of Education of
China (Grant No. 20131101120043).

References
[1] S. Naeem, K. M. Taghi, H. V. Jason. Predicting faults in high assurance software [C]. In

Proceeding of the 12th IEEE International High Assurance Systems Engineering Symposium,
San Jose, USA, pp.26-34, 2010.

[2] W. Qing, W. Shujian, L. Mingshu. Software defect prediction [J]. Journal of Software, vol 19(7):
1565-1580, 2008. .DOI:10.3724/SP.J.1001.2008.01565. (In Chinese)

[3] P. C. ParaC. Exhaustive and heuristic search approaches for learning a software defect
prediction model[J]. Engineering Applications of Artificial Intelligence, vol 23(1): 34-40, 2010.

621

[4] O. Kazu. Software defect prediction based on stability test data [C]. Proceedings of 2011
International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering,
pp.385-387, 2011.

[5] L. Stefan, B. Bart, M. Christophe, P. Swantje. Benchmarking classification models for software
defect prediction: A proposed framework and novel findings [J]. IEEE Transactions on
Software Engineering, vol 34(4): 485-496, 2008. doi: 10.1109/TSE.2008.35

[6] Y. Anlei, P. Dechang. Software defect prediction model based on PSO-BP [J]. Computer
Engineering and Applications, vol 49(7): 64-67, 2013. DOI:10.3778/j.issn.1002-8331.1208-
0533.(In Chinese)

[7] Yinran. Research on software defect predict model based on SAPS0-BP [D]. South-West
University, 2014.

[8] F. F. Igual, R. Mayo, E. S. Quintana-orti. Attending High Performance in General-purpose
Computations on Current Graphics Processors [C], VECPAR, LNCS 5336.2008:406-419, 2008.

622

	a) Complete BP neural network initialization in CPU and GPU.
	b) Realize learning process with BP by JCUDA programming technology.
	c) Using the calculation results of CPU storing BP algorithm.
	d) Analysis and monitors the effect of result of the data in GPU by CPU
	B. Experimental data and environment
	C. Experiment result and analysis
	1) Experimental results and analysis of rate improving
	2) The result and analysis for hidden nodes experiment

