

An improved adaptive policy Based on Recency and Frequecy
Hongliang YANG

 School of Informacs, Linyi University, Linyi, 276009, China
email: lytuyhl@163.com

Keywords: Cache; Replacement Policy; LRFU; Adaptive Method; Improved LRFU

Abstract. Cache replacement policy is one of the caching techniques, including the recency based
algorithms and the freqency based algorithms etc. Although combining the recency and frequency,
the LRFU algorithm could not dynamically adjust itself to adapt to the practical circumstance. This
paper proposes an improved LRFU algorithm, which can dynamically modify the λ value of the
LRFU to choice the appropriate replacement policy according to the practical case. Adopted the
trace simulations with three common access patterns, the experiment shows that the improved
LRFU algorithm can improve the hit ratio compared the LRFU, LRU and LFU algorithms.

Introduction
Caching techniques are fundamental for bridging the performance gap between components in a

computer system, they are widely used in storage system, databases, virtual memory management in
OS, etc. Performance of caching techniques has great influence over memory latency, processor
performance and energy consumption. Cache replacement policy is one of the techniques, managing
the contents of the cache so as to improve the overall performance. In this paper, we study the cache
replacement policy focusing on the processor and memory. We assume that both main memory and
cache are managed in discrete, uniformed-sized units called block. An efficient cache replacement
algorithm must replace the block that is used farthest in the future. When the block is present in the
cache, then it can be served quickly resulting in a “cache hit”. On the other hand, if a requested page
is not present in the cache, then it must be fetched from the main memory resulting in a “cache
miss”. Usually, latency on a cache miss is significantly higher than that on a cache hit. The main
performance index of the cache replacement policy is the rate of cache hit or miss. Hence, the cache
strategies focus on improving the hit ratio.

There are several kinds of existed cache replacement policies, which have been divided into the
access pattern based algorithms and the analysis model based algorithms [2]. The policies based on
the access pattern are made decision by the intuitive inspiration and experience summary, such as
ARC, MQ, FBR, 2Q etc. The policies based on the analysis model are proposed the reasonable
policy by access features, such as LRU, EELRU, LIRS, LFU etc. In this model, the locality and the
frequency are the features of the most common access, so the polices based on the balance strategy
algorithm of the recency and frequency have the better serviceability, and there are many kinds of
existed replacement policies combined recency and frequency such as ARC, MQ, FBR, LRFU, etc.

Although, LRFU policy compromised the LFU and LRU two replacement policies, which
transforms from the LFU to the LRU with the varying of the parameter λ from 0 to 1. In a particular
LRFU algorithm, because the value λ is fixed, the recency and frequency can't be adjusted even
using the appropriate valve of CRF, when the access patterns and access features changed. So the
LFRU cannot be applied well to the practical environment. In this paper, we proposed an adaptive
mechanism to improve LRFU combining the existed ideas of the dynamic adjustment.

Prior Work
The advantages of LRU are that it is extremely simple to implement and captures recency that is

common to many workloads. While LRU captures the “recency” features of a workload, it does not
capture and exploit the frequency features of a workload. More generally, if some blocks are often

International Conference on Advances in Mechanical Engineering and Industrial Informatics (AMEII 2015)

© 2015. The authors - Published by Atlantis Press 877

re-requested, but the temporal distance between consecutive requests is larger than the cache size,
then LRU cannot take advantage of such pages with long-term utility. LRU can be easily polluted
by a scan, that is, by a sequence of one-time use only page requests leading to lower performance.

LFU replaces the least frequently used block and is optimal under the IRM [2], but it has several
drawbacks [5]: (1) Its running time per request is logarithmic in the cache size. (2) It is oblivious to
recent history. (3) It does not adapt well to variable access patterns; it accumulates stale pages with
past high frequency counts, which may no longer be useful.

LRFU [5] is the novel caching algorithms that have attempted to combine recency and frequency
(CRF) with the intent of removing one or more disadvantages of LRU. The police always choose a
block with minimum value of CRF to evict. The CRF value is calculated by weight function

, , among them, x is the CRF value of b block in the
current time, λ is the time interval from the last access to the current, λ is the balance parameter of
locality and frequency. For example, the accessed time of some block is at 2, 5 and the current
time is at 7, then the value of the CRF of the block is F(7-2)+F(7-5). It is obvious that if the
parameter is the greater, the policy is more inclined to focus on the access locality, if the λ value
gets smaller, the policy is more inclined to focus on access frequency features. But the λ value is
fixed, so the LRFU is not a self-tuning policy.

Improved LFRU
The improved LFRU dynamically adjusts the λ value in the whole access, which can adapt the

algorithm to the changes of access pattern, so the system can get the best performance.
Only using FIFO queues, 2Q, MQ, ARC, CAR [4]and other algorithms saved the information of

the evicted block recently, when the blocks accessed again, according to analyzing the information
in queues, the policies could be adjusted dynamically. We used this strategy for reference into the
improved LFRU policy.

In order to count the block information with a longer time access, we also use a FIFO queue
called Lout to record the number and the CRF value of the evicted block, and the queue length is set
to C. Lout. In this queue, the blocks are arranged according to the evicted order, which evicted
recently is placed at the tail of the queue. When the queue is full, the block on the head will be
eliminated. When accessed miss hit, the record will be searched in the Lout firstly, if the
corresponding record is found, the block is to be loaded into the cache, at the same time, the present
value of CRF is calculated according to the last access time and CRF value of the recorded block in
the Lout, and then, the relevant record is deleted. If there is no record in Lout, the block will be
loaded directly from the memory and the CRF value is set to F (0), besides, the information of the
replaced block will be placed in the tail of the Lout queue. If Lout queue is full, the head record in
the queue will be deleted.

when accessing the new block, if the corresponding recorders in the Lout queue are found
successively, or found successively and the times of the block in the queue are more than out of the
queue, these cases indicate that the block being accessed more times is more likely to be accessed
again, so we reduce the λ value to make the replacement strategy more intend to LFU algorithm. If
the new a block is not in Lout accessed successively, or not in the Lout for many times and the
times of a new block not in Lout are more than in the Lout times, which indicates that the block
being accessed at the earliest is the least to be accessed again, so we increase the λ value to make
the replacement strategy more intend to LRU algorithm. Besides, if the requested block is found in
the cache, which indicates that the block accessed more times is more likely to access again, the
pattern is dealt as the times found in Lout of the new block.

In conclusion, this algorithm can be expressed as following:
(1) Following the basic LRFU algorithm, and count the times of the successional access.
(2) Using the FIFO queue to save the record number and CRF value of the block evicted the

cache and the queue length is set to C.Lout. When missed hit and searched the corresponding record
in Lout, the block can be re calculated CRF value according to the record of the last access time and

878

λ value.
(3) Adjusting dynamically the λ value as the following rules:
Set and initialize parameters;
If (new block is recorded in Lout) or (hit in cache)
 {
Count times with a parameter InTimes;
If (this block is in Lout or hit last time)
{
Then count the successional times with SuccTimes;
 Else clear SuccTimes;
 }
Else
Count times with another parameter OutTimes;
}
If ((InTimes > M_Times AND InTimes/OutTimes > M_Ratio) OR (SuccTimes> M_Times AND

successional in the Lout))
{
 Modify λ to λ/M_Value;
 Clear all parameters;
}
If ((OutTimes >M_Times AND OutTimes/InTimes > M_Ratio) OR (SuccTimes>M_Times AND

successional out the Lout))
{
 Modify λ to λ* M_Value;
 If the value is more than 1, regard as 1;
 Clear all parameters;
}

Here, M_times expresses the change opportunity, M_ratio expresses the change possibility. In

the practical application, we can adjust the M_Times and M_Ratio according to the practical
circumstance. Usually, we set the initial λ=0.001, and increases or reduce λ value according to the
rules in each phase. From the test, we find that when we set M_Ratio=1, M_Times=5 and M_Value
=5, the dynamical effect is the best.Test results

Experiment and evaluation
In this section, we use the trace simulation to evaluate the performances of the improved LRFU

algorithm. The experiment environment is the Memory Buddies Trace of Linux server [1]. Memory
Buddies Trace is the memory access trace of the data virtualization center server combined the
resources of the multiple devices and provided users with a unified logical interface, the users can
access the different resources by the different patterns [7]. In practical application, the different
replacement algorithm has different performance in application environment, according to the
feature of the improved LRFU, we choose three kinds of trace simulation, representing respectively
three kinds of access pattern: linear access pattern, probability access pattern, locality access pattern.
Although the whole hit ratio is not high, Fig1~Fig2 shows that the improved LRFU can improve the
hit ration in different circumstance compared with LRFU, LRU and LFU, which illustrates that
adjustment dynamically of the λ value plays the positive role. And Fig3 shows that the improved
LURF policy do not reflect the good performance compared the LRFU policy, because when
accessed flow with a strong local characteristics and access successively, the algorithm reduce λ
value to tend to LFU policy, which caused the negative effect, especially in the large capacity cache.
Because the adjustment of λ depends on the change of access feature, and the improvements of hit
rate in cache need not extra expenditure, so it may be adopted in wide fields.

879

Fig.1. Compare hit rate in linear access pattern pattern

Fig.2. Compare hit rate in probability access pattern

Fig.3. Compare hit rate in local access pattern

Conclusion
This paper improved the LRFU algorithm with adaptive combined the strategy of dynamical

adjustment, in this strategy, according to the recorded history information from access recency (or
frequency) to access frequency (or recency), the CRF value can be adjusted with the change of the λ
value, and so, the different strategies can be adjust dynamically to adapt the different circumstance.
Thus, the hit rate is improved by adopting this strategy, and the test results show that this policy did
not bring any negative effect. Of course, this strategy depends on the CRF value, and what the CRF
recorded is the history information, which perhaps is no use for the present replacement strategy, so,
the evicted block is not the suitable. This is our late task to improve.

Acknowledgement
In this paper, the research was sponsored by the Natural Science Foundation of Shandong

Province (Project No. ZR2014FL012), Achievements Transformation Major Projects of Shandong
Province (Project No. 2014ZZCX02702) .

References

[1] Wood T, Tarasuk G L, Shenoy P. “Memory buddies: Exploiting page sharing for smart
colocation in virtualized data centers,” Proceedings of the ACM SIGPLAN/SIGOPS Conference on
Virtual Execution Environments. New York, USA, 2009:31-34.

880

[2] Courtois P. vantilborgh H. “A decomposable model of program Paging behavior,” Aeta
Information, 1976, 6(3):251-275.

[3] Glass G, Cao P. “adaptive page replacement based on memory reference behavior,” Proceedings
of the ACM SIGMETRICS Conference on Measurement and Modeling of Computer System.
Seattle, USA, 1997:115-126.

[4] Johnson T. Shasha D. “2Q: A low overhead high performance buffer management replacement
algorithm,” Proceedings of the International Conference on Very Large Data Bases. Santiago, Chile,
1994:439-450.

[5] Lee D, Choi J, Kim J H. “LRFU: A Spectrum of policies that subsumes the least recently used
and least frequently used policies,” IEEE Transactions on Computers, 2001, 50(12):1352-1361

[6] B. Fields, “Focusing Processor Policies via Critical-Path Prediction,” In Proceedings of the 28th
International Symposium on Computer Architecture, Sweden, June 2001:74–85.

[7] G. Glass and P. Cao, “Adaptive page replacement based on memory reference behavior,” In
ACM SIGMETRICS Conference on Measurement and Modeling of computer systems, pages
115-126, 1997.

[8] Robinson J T, Devarakonda M V, “Data cache management using frequency based
replacement,” Proceeding of the ACM SIGMETRICS Conference on Measurement and Modeling
of Computer System. Atlanta, USA, 1990:134-142.

[9] Yannis Smaragdakis, “General adaptive replacement polices,” ISSM’04, October 24-25, 2004,
Vancouver, British Columbia, Canada.

[10] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown, “A Free,
Commercially Representative Embedded Benchmark Suite,” In Proceedings of the 4th Workshop
on Workload Characterization, USA, December 2001:83–94.

[11] Y. Smaragdakis, S. F. Kaplan, and P. R. Wilson, “EELRU: Simple and efficient adaptive page
replacement,” ACM SIGMETRICS Conference on Measurement and Modeling of computer
systems, 1999:122-133.

[12] Sun Guozhong, Yuan Qingbo, Chen Mingyu, “An improved adaptive buffer replacement
algorithm used for second level buffer,” Journal of Computer Research and Development, 2007,
44(8):1331-1338. (in chinese)

[13] Song J, Zhang X. “Making LRU friendly to weak locality workloads: A novel replacement
algorithm to improve buffer cache performance,” IEEE Transactions on Computers, 2005,
54(8):939-952.

881

