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Abstract 

This paper deals with the NP-hard single-machine total weighted tardiness problem with sequence dependent setup 
times. Incorporating fuzzy sets and genetic operators, a novel ant colony optimization algorithm is developed for 
the problem. In the proposed algorithm, artificial ants construct solutions as orders of jobs based on the heuristic 
information as well as pheromone trails. To calculate the heuristic information, three well-known priority rules are 
adopted as fuzzy sets and then aggregated. When all artificial ants have terminated their constructions, genetic 
operators such as crossover and mutation are applied to generate new regions of the solution space. A local search 
is then performed to improve the performance quality of some of the solutions found. Moreover, at run-time the 
pheromone trails are locally as well as globally updated, and limited between lower and upper bounds. The 
proposed algorithm is experimented on a set of benchmark problems from the literature and compared with other 
metaheuristics. 

Keywords: Scheduling; Ant colony optimization; Genetic operators; Total weighted tardiness; Sequence dependent 
setups. 
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1. Introduction 

Scheduling problems have been considered for over five 
decades. In this context, some research efforts are 
concerned with due date related objectives such as the 
maximum/total tardiness, the total weighted tardiness 
and the number of tardy jobs. However, the total 
weighted tardiness as the performance criterion has 
attracted a large amount of literature on scheduling. 
Many researchers have studied the single-machine total 
weighted tardiness scheduling problem — denoted as 
1//∑wjTj by the three-field notation — and examined 
with different approaches. Lawler et al. have proved1 
that the 1//∑wjTj problem is strongly NP-hard. The 

single-machine total weighted tardiness scheduling 
problem with sequence dependent setup times 
(STWTSDS) — denoted in the literature as 1/sij/∑wjTj 
— is strongly NP-hard too, because the STWTSDS is 
clearly more complicated than the problem with 
sequence independent setup times. 

To solve the STWTSDS, some solution methods 
have been developed which may generally be classified 
into two categories, heuristic and metaheuristic 
algorithms. Lee et al. have proposed2 one of the best 
known constructive heuristics employing a priority rule, 
called the apparent tardiness cost with setups (ATCS) 
rule. Although the ATCS can quickly derive a feasible 
solution to the STWTSDS, the performance quality of 
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its solution is not superior, particularly for large size 
problems. Cicirello and Smith have proposed3 four 
improvement heuristics, namely, limited discrepancy 
search, heuristic-biased stochastic sampling, value-
biased stochastic sampling and value-biased stochastic 
sampling seeded hill climber, as well as a simulated 
annealing (SA) approach. A beam search has been 
presented4 by Valente and Alves. Lin and Ying have 
developed5 some metaheuristics including a genetic 
algorithm (GA), a SA by means of a random swap and 
insertion search, and a tabu search by adopting a swap 
and an insertion tabu list. Liao and Juan have 
developed6 an ant colony optimization (ACO) algorithm 
by introducing a new parameter for initializing 
pheromone trails and adjusting the timing of applying 
local search. Anghinolfi and Paolucci have proposed7 
another ACO algorithm in which a new scheme is 
applied to update pheromone trails. Anghinolfi and 
Paolucci have also developed8 a discrete particle swarm 
optimization algorithm for the STWTSDS. Moreover, 
Tasgetiren et al. have proposed9 a discrete differential 
evolution algorithm with excellent results by employing 
some constructive heuristics to generate the initial 
population. 

In this paper, a new ACO algorithm is developed for 
the STWTSDS by incorporating fuzzy sets and genetic 
operators. Three well-known priority rules are adopted 
as fuzzy sets and then aggregated in order to calculate 
the heuristic information. In recent years, a number of 
hybrid algorithms combining ACO and GA have been 
developed for different problems (e.g., see Refs. 10–13). 
However, we combine ACO and GA in a manner 
somewhat similar to that in Ref. 12. That is, when all 
artificial ants have constructed their solutions, genetic 
operators such as crossover and mutation are applied to 
generate new solutions. Moreover, a local search is 
performed to improve some solutions found. The 
proposed ACO algorithm is then compared with other 
metaheuristics developed for the STWTSDS. 
Computational experiments on 120 benchmark problem 
instances from the literature show the effectiveness of 
the algorithm, especially in comparison with the 
existing ACO algorithms. We would like to emphasize 
that the main goal of this study is to develop a new 
ACO algorithm that can outperform other ACO 
algorithms available in the literature for the STWTSDS. 

The remainder parts of the paper are organized as 
follows. Section 2 provides the problem statement. In 

Sec. 3, the ACO algorithm developed for the 
STWTSDS is presented. Section 4 gives the 
computational results. Finally, Sec. 5 is the conclusions. 

2. Problem Definition 

The STWTSDS can be expressed as follows. There are 
n independent jobs that have to be processed on a single 
machine without interruption. All jobs are available at 
time zero. The machine can process one job at a time. 
Each job j has a processing time pj, a due date dj, a 
weight wj, and a setup time sij if it immediately follows 
job i in the job sequence and s0j otherwise, i.e., if it is 
first in the job sequence. 

Let π be a sequence of jobs such that π = {π(0), π(1), 
…, π(n)}, where π(k) is the index of the job scheduled at 
the kth position and π(0) = 0 is a dummy job. The 
completion time of the job scheduled at the kth position 
can be calculate as 
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The total weighted tardiness of job sequence π is finally 

defined as 
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n
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  . Then, the objective is to 

find a sequence such that the total weighted tardiness is 
minimized. 

3. Proposed ACO Algorithm 

ACO algorithms belonging to the class of constructive 
metaheuristics have been applied successfully to hard 
combinatorial optimization problems (e.g., see Refs. 14 
and 15). These algorithms are inspired by the foraging 
behavior of real ants in finding shortest paths from their 
nest to food sources. Real ants are social insects which 
live in colonies. They have not visual cues but use a 
chemical substance, called pheromone, deposited on 
their paths for communicating among each other. Ants 
that select longer paths will get to the food and back 
more slowly than ants that selects shorter paths. As a 
greater amount of pheromone is deposited on shorter 
paths, such paths will be chosen by following ants with 
higher probability. 

In the proposed ACO algorithm, each artificial ant 
probabilistically constructs step by step a solution as an 
order of jobs by completing at each step a partial 
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solution. The construction of solutions by artificial ants 
is guided by both the heuristic information and 
pheromone trails. The heuristic information is 
determined by a new approach combining three priority 
rules. When every ant in the colony has built its 
solution, crossover and mutation operators are 
implemented on the population of the constructed 
solutions. A local search is then performed to improve 
the best solution found in the iteration. Moreover, the 
pheromone trails are updated at run-time through local 
and global updating rules, and limited between lower 
and upper bounds. The flow chart of the proposed ACO 
algorithm is shown in Fig. 1. 

3.1. Pheromone trails 

In the proposed algorithm, a pheromone trail is 
associated with the assignment of a job to a position. 
Let τh(k, j) be the pheromone trail denoting the desire of 
placing job j in the kth position of a sequence at 
iteration h of the algorithm. The pheromone trails form 
a kind of adaptive memory of previously found 
solutions. Like most applications of ACO, at the 
beginning of the proposed algorithm (and also at each 
pheromone trails resetting), a fixed value τ0 is assigned 
to all pheromone trails. Then, at run-time, the trail 
intensities are updated by applying local and global 
updating rules. Moreover, to prevent the algorithm from 
convergence to local optima, like the max–min ant 
system16, the pheromone trails are always limited 
between a lower bound τmin and an upper bound τmax 
calculated as follows: 

 

*
max 1

min 2 max
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where G1 and G2 are two positive parameters,  is the 
global pheromone trail evaporation rate, and F* is the 
total weighted tardiness of the global best solution, i.e., 
the best solution found since the start of the algorithm. 

It should be noted that, whenever a solution better 
than the current global best solution is found, τmax as 
well as τmin stated in Eq. (3) is modified and then, the 
pheromone trails are adjusted, that is, if a pheromone 
trail is smaller than the latest τmin or greater than the 
latest τmax, it is set equal to τmin or τmax, respectively. 
Obviously, the interval [τmin, τmax] shifts to the right 
through modifying. This enforces that trails having a 
little amount of pheromone are increased to the new 

 

Fig. 1.  Flow chart of the proposed ACO algorithm. 
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τmin. In addition, the amounts of the pheromone trails 
related to the new global best solution are allowed to be 
increased to the new τmax — by means of the global 
updating rule (see Eq. (13). 

3.2. Heuristic information 

Let η(k, j) be the heuristic information denoting the 
desire of placing job j in the kth position of a sequence. 
The heuristic information represents a priori 
information about the problem or run-time information 
provided by a source different from the artificial ants. 

In the ACO algorithms proposed in Refs. 6 and 7, 
the dispatching rule of ATCS has been used as the 
heuristic information. The ATCS rule combines the 
following three well-known priority rules in a single 
ranking index17: 
 WSPT (weighted shortest processing time) rule, 

which orders the jobs in non-increasing order of 
wj/pj; 

 MS (minimum slack) rule, which schedules at time 
t the job with minimum slack where the slack of job 
j is calculated as max(dj - pj - t, 0); 

 SST (shortest setup time) rule, which orders the 
jobs in non-decreasing order of their setup times. 

According to the ATCS rule, at time t the job with 
maximum index is scheduled in which the index of job j 
at time t when job i has completed its processing on the 
machine is calculated as 
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where p  is the average of the processing times of the 
unscheduled jobs, s  the average of the setup times of 
the unscheduled jobs, K1 the due date related scaling 
parameter and K2 the setup time related scaling 
parameter. 

In this paper, to combine the three priority rules 
mentioned above, a new approach is proposed as 
follows. Each of the rules is firstly adopted as a fuzzy 
set. To give an example, the WSPT rule may be viewed 
as: if the wj/pj of job j is large (where the concept 
“large” is fuzzy), it must be scheduled with a high 
desirability (representing the heuristic information). 
Accordingly, the WSPT rule is adopted as the fuzzy set 
of “jobs with large wj/pj”. Similarly, the MS and SST 
rules are, respectively, adopted as the fuzzy sets of “jobs 
with small slack” and “jobs with small setup time”. Let 

Rj
(W), Rj

(M) and Rj
(S) be the grade of membership of 

unscheduled job j (to be placed in the kth position of a 
sequence) in the fuzzy sets associated with the WSPT, 
MS and SST rules, respectively. These grades may be 
calculated in several manners. In this study, however, 
they are given by 
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where U is the set of all unscheduled jobs. Note that, to 
avoid division by zero, 1 is added to the slack in Eq. (6) 
as well as to the setup time in Eq. (7). 

Rj
(w), Rj

(M) and Rj
(s) can then be aggregated in order 

to calculate the heuristic information. As an aggregation 
operator, four operators have been considered, including 
the maximum, average, product and minimum 
operators. Our experimental analyses show that the 
product operator can obtain better results than the 
others. Consequently, the desire of placing job j in the 
kth position — given that job i has been scheduled in 
the (k-1)th position and completed at time t — is 
calculated as 

 
( ) ( ) ( )( , ) .W M S
j j jk j R R R   (8) 

Clearly, the proposed approach stated in Eqs. (5)–
(8) guarantees that the larger wj/pj, the smaller max(dj - 
pj - t, 0) and sij, the higher η(k, j). In addition, η(k, j) is 
always between 0 and 1. 

3.3. Solution construction 

Each ant constructs a sequence of jobs by starting with 
an empty sequence and then iteratively appending an 
unscheduled job to the partial solution until all jobs are 
scheduled. At each step, an unscheduled job is chosen 
by applying a transition rule so-called pseudo-random 
proportional rule18. 

The pseudo-random proportional rule is based upon 
a parameter q0 between 0 and 1 which determines the 
relative importance of exploitation versus exploration. 
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A random number q uniformly distributed in [0, 1] is 
then generated. If q  q0, an ant at position k selects the 
unscheduled job j for which (exploitation) 

    arg max ( , ) ( , ) ,hj k j k j
       (9) 

where α and β are two positive parameters determining 
the relative importance of the pheromone trail versus the 
heuristic information. Otherwise, the ant selects an 
unscheduled job j according to the following probability 
distribution (exploration): 
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3.4. Local updating rule 

While constructing a solution by an ant, the local 
updating rule is applied to the pheromone trails related 
to the selected jobs. So, if job j is placed at the kth 
position of the sequence (at iteration h), the amount of 
the associated pheromone trail is updated as follows: 

 min( , ) (1 ) ( , ) ,h hk j k j         (11) 

where ρ' is the local pheromone trail evaporation rate. 
According to Eq. (11), τh(k, j) is decreased from its 

earlier value (when τh(k, j) = τmin, it of course remains 
unchanged). Hence, the effect of the local updating rule 
is to make choice of putting job j at the kth position less 
desirable for the next ants at iteration h in order to 
achieve diversification. 

3.5. Genetic operators 

As mentioned earlier, when all artificial ants in the 
colony have terminated their constructions, crossover 
and mutation genetic operators are implemented on the 
population of the constructed solutions to generate new 
regions of the solution space. These operators have a 
role in the diversification of the search permitting a 
better exploration of the solution space. In the other 
hand, since they perform a search in the neighborhood 
of the ant-sequences, they also have a role in the 
intensification of the search. 

In this study, the crossover and mutation operators 
developed19 by Chou for the problem with sequence 
independent setup times are adopted. The crossover 
operator combines information from two solutions as 
parents by the two point exchange method to produce 

four offspring, i.e., to generate four new solutions so 
that each of which has some characteristics of each 
parent. Parents are selected to undergo the crossover 
according to the bias roulette wheel method; as a result, 
the constructed solutions with lower objective function 
value are expected to have a higher chance of being 
selected. The number of parents is set equal to a 
percentage of the number of artificial ants. The 
percentage is a parameter defined as the crossover rate. 
Moreover, the mutation operator selects two genes (i.e., 
two jobs in a given sequence) at random and exchanges 
them. The swapping mutation mechanism is applied to 
the offspring as well as the solutions constructed by 
artificial ants in order to produce random variation. 

3.6. Local search 

To improve the performance of the algorithm, it is 
hybridized with a local search procedure having a role 
in the intensification of the search. We have tested 
various methods for the intensification phase, and found 
that the local search procedure proposed7 by Anghinolfi 
and Paolucci is superior. The procedure performs a 
series of random insert moves until no improvement is 
found, and then executes a series of swap moves. 
Whenever a swap move is not able to find an improved 
solution, a new series of random insert moves is started. 
Moreover, after completing every n × (n-1) series of 
insert and swap moves, the procedure performs a 
random restart as in the iterated local search. The 
maximum number of random restarts allowed is limited 
by n/5. Since the local search procedure is clearly time-
consuming, to achieve a good trade off, it is applied 
only to the best solution generated at each iteration. 

3.7. Global updating rule 

Once all ants in the colony have completed their 
solutions, the global updating rule is applied to the 
pheromone trails in a way similar to that in Ref. 20. 
First, each of the pheromone trails is evaporated (at the 
end of iteration h) as follows: 

 1( , ) (1 ) ( , ).h hk j k j      (12) 

Then, the amount of each pheromone trail related to the 
global best solution is increased. If job j is placed at the 
kth position of the solution, the associated pheromone 
trail is updated as follows: 

 *
1 1( , ) ( , ) ,h hk j k j F       (13) 
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where Ω is a parameter determining the importance of 
the global best solution. The global updating rule allows 
the intensification of the search during the next 
iteration. 

4. Computational Results 

The proposed ACO algorithm has been coded in Visual 
C++ and run on a Pentium 4, 2 GHz PC with 2 GB 
memory. To evaluate the performance of the algorithm, 
it has been tested on a set of 120 benchmark problems, 
each with 60 jobs, from Cicirello and Smith3 (available 
at http://www.ozone.ri.cmu.edu/benchmarks.html). 
Each problem instance is characterized by three factors: 
the due date tightness factor specified by {0.3, 0.6, 0.9}, 
the due date range factor specified by {0.25, 0.75}, and 
the setup time severity factor specified by {0.25, 0.75}. 
For each of the 12 combinations of factor values, 10 
problem instances with 60 jobs were generated. 

4.1. Parameter settings 

For setting the numeric parameters of the algorithm, in 
the preliminary experiment various combinations of the 
parameter values have been tested, where the following 
values have been superior and used for all further 
studies: 20 artificial ants in the colony, G1 = 100, G2 = 
0.001, q0 = 0.99, α = 5, β = 0.9, ρ = 0.03, ρ' = 0.1 and Ω 
= 4. In addition, τ0 has been set to 1 and the crossover 
rate to 0.9. The pheromone trails are reset if no 
improvement can be made for 30 successive iterations, 
and the algorithm terminates when either the total 
number of iterations reaches 150 or no improvement can 
be made for 50 successive iterations. 

4.2. Contribution of the genetic operators 

To show the effect of incorporating the genetic 
operators, an experimental test has been conducted by 
temporarily removing them from the algorithm. For 
convenience, we denote the proposed ACO algorithm, 
which includes the genetic operators, as ACOGO, and the 
algorithm without the genetic operators as ACO-GO. Ten 
problem instances randomly chosen have been solved 
by ACOGO as well as ACO-GO. Each test problem has 
been tested for five trails, and the average total weighted 
tardiness achieved has then been chosen. In addition, to 
make a fair comparison, the maximum CPU time has 
been set to 45 seconds. Fig. 2 gives the percentages of 
improvement of ACOGO over ACO-GO. As seen, 

incorporating the genetic operators can improve the 
performance of the ACO algorithm. 

4.3. Contribution of the local search 

To show the effect of the local search, another 
experimental test has been conducted by temporarily 
removing it from the algorithm. The algorithm with 
(ACOGO) as well as without (ACOGO-LS) local search 
has been tested on ten problem instances randomly 
chosen. Again, the maximum CPU time has been set to 
45 seconds, each test problem has been tested for five 
trails, and the average total weighted tardiness achieved 
has then been chosen. Fig. 3 gives the percentages of 
improvement of ACOGO over ACOGO-LS. It is observed 
that incorporating the local search procedure can 
improve the performance of the ACO algorithm. 

4.4. Performance analysis of the proposed 
algorithm 

To assess the performance of the ACO algorithm 
proposed to solve the STWTSDS, each of the problem 
instances has been tested for ten trails. The numerical 
results are summarized in Table 1, which gives, for each 

 

Fig. 2.  Improvement of ACOGO over ACO-GO. 

 

Fig. 3.  Improvement of ACOGO over ACOGO-LS. 
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test problem, the best and average total weighted 
tardiness achieved. In the table, the BKS is the best 
known solution (the BKSs include our algorithm). 
ACOGO has improved the BKSs for two problem 
instances, test problems 52 and 98, and found solutions 
equal to the BKSs for 39 test problems. In addition, the 
average CPU time for each run has been less than 44 
seconds (with a minimum of 0.004 and a maximum of 
73.843). From Table 1, as the best and average objective 
function values are relatively close to each other, it can 
be concluded that ACOGO is robust. 

Furthermore, Table 2 gives a comparison between 

the proposed algorithm and other ACO algorithms 
available in the literature for the STWTSDS, including: 
 ACOLJ: the ACO algorithm proposed6 by Liao and 

Juan, 
 ACOAP: the ACO algorithm proposed7 by 

Anghinolfi and Paolucci, 
and also other well-known heuristics and metaheuristics 
from the literature, including: 
 RBS: the recovering beam search proposed4 by 

Valente and Alves, 
 SA: the simulated annealing approach proposed5 by 

Lin and Ying, 
 GA: the genetic algorithm proposed5 by Lin and 

Table 1.  Performance of the proposed ACO algorithm on the benchmark problems. 

ACOGO   ACOGO  ACOGO 

No. BKS Best Average No. BKS Best Average  No. BKS Best Average 

1 474 516 603.3 41 69102 69627 70529.8  81 383485 383485 384507.8 
2 4902 5046 5153.4 42 57487 57679 58336.0  82 409544 409544 411965.5 
3 1465 1593 1659.8 43 145310 146068 147097.3  83 458752 458863 459849.0 
4 5946 6046 6241.4 44 35289 35289 35905.0  84 329670 329670 330623.0 
5 4084 4224 4325.2 45 58935 59281 59868.9  85 554766 555328 556646.8 
6 5788 6757 7020.0 46 34764 34887 35431.5  86 361417 361417 364029.6 
7 3350 3458 3596.2 47 73005 73621 74204.7  87 398551 398670 399780.7 
8 114 121 134.4 48 64612 65138 65644.9  88 433186 433939 434764.2 
9 5803 5914 6117.2 49 77641 78424 78968.1  89 410092 410092 410597.1 
10 1799 1871 1991.4 50 31565 31705 32131.4  90 401653 401959 402400.1 
11 3294 3811 4242.0 51 49907 51139 51798.0  91 340030 348056 351601.0 
12 0 0 0 52 93973 93973 97709.8  92 361152 361514 365948.2 
13 4194 4379 5114.4 53 84841 86364 88276.3  93 404548 408201 409795.6 
14 2268 2761 2930.7 54 118809 118862 120947.3  94 332983 333535 334628.4 
15 964 1216 1319.4 55 66006 67911 69176.0  95 517011 522717 526292.5 
16 3876 4178 4970.4 56 75367 75589 76208.6  96 457631 458971 464550.0 
17 61 125 178.9 57 64552 65815 69434.6  97 409263 410755 413900.7 
18 857 1195 1385.0 58 45322 47159 47687.5  98 522093 522093 528477.6 
19 0 0 70.4 59 52001 54553 55029.3  99 364442 368603 370459.5 
20 2111 2485 2765.1 60 60765 64093 65711.7  100 431736 434118 443820.8 
21 0 0 0 61 75916 75916 76400.9  101 352990 352990 353454.5 
22 0 0 0 62 44769 44781 44944.4  102 492748 493846 494738.1 
23 0 0 0 63 75317 75317 75811.0  103 378602 378602 380198.0 
24 1033 1042 1056.5 64 92572 92572 92622.4  104 357963 358017 358372.7 
25 0 0 0 65 126696 126696 127627.0  105 450806 450806 451346.5 
26 0 0 0 66 59685 59685 59988.3  106 454379 454983 455955.0 
27 0 0 0 67 29390 29390 29454.1  107 352766 352766 354426.5 
28 0 0 0 68 22120 22120 22263.7  108 460793 461452 463608.1 
29 0 0 0 69 64632 71118 71285.9  109 413004 413019 414462.3 
30 0 0 73.6 70 75102 75102 75102.0  110 418769 418769 428679.2 
31 0 0 0 71 145007 146957 148147.4  111 342752 343953 347353.0 
32 0 0 0 72 43904 45348 47427.8  112 367110 370822 376086.2 
33 0 0 0 73 28785 28824 29551.7  113 260176 260288 269393.7 
34 0 0 0 74 30313 31952 32482.3  114 464136 464495 468019.1 
35 0 0 0 75 21602 21991 22990.9  115 457289 458385 461126.3 
36 0 0 0 76 53555 54758 57667.1  116 527459 533160 539378.1 
37 107 354 596.8 77 31937 32239 33942.8  117 502840 504161 511437.3 
38 0 0 0 78 19462 20452 20868.5  118 349749 353897 358553.3 
39 0 0 0 79 114999 117190 120458.8  119 573046 578827 579858.1 
40 0 0 0 80 18157 18157 20166.9  120 396183 399756 401077.8 
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Ying, 
 TS: the tabu search proposed5 by Lin and Ying, 
 DPSO: the discrete particle swarm optimization 

algorithm proposed8 by Anghinolfi and Paolucci, 
 DDE: the discrete differential evolution algorithm 

proposed9 by Tasgetiren et al. 
In Table 2, to be consistent with the other 

algorithms, the best results achieved by ACOGO are used 
in the comparison. Moreover, for each problem 
instance, if the total weighted tardiness of a given 
solution (obtained by any algorithm) is F, the solution 
quality is then measured by the mean percentage 
difference from the BKS as (F - BKS) / BKS × 100. 

In comparison with ACOLJ, ACOGO obtains better 
solutions for 98 problems and equal solutions for 16 
problems. While in comparison with ACOAP, ACOGO 
obtains better solutions for 65 problems and equal 
solutions for 38 problems. The results concerning 
average of the deviations of all 120 test problems 
(shown in the last row of Table 2) confirm that the 
proposed ACO algorithm outperforms the other ACO 
algorithms, ACOLJ and ACOAP, as is the main goal of 
the paper. It is noted that, even if those instances with 
zero weighted tardiness for which ACOLJ has not 
obtained an optimal solution (e.g., test problem 30) are 
not considered, ACOLJ gives an average deviation equal 
to 34.72%. In such a situation, ACOAP gives an average 
deviation equal to 6.24%. 

In comparison with RBS, ACOGO finds better 
solutions for 105 problems and equal solutions for 12 
problems. In comparison with SA as well as GA, 
ACOGO obtains better solutions for 98 problems and 
equal solutions for 20 problems. In comparison with TS, 
ACOGO finds better solutions for 99 problems and equal 
solutions for 18 problems. However, in comparison with 
DPSO and DDE, ACOGO obtains better solutions for 25 
and 5 problems and equal solutions for 38 and 42 
problems, respectively. The results concerning average 
of the deviations of all 120 test problems confirm that 
the proposed ACO algorithm outperforms RBS, SA, GA 
and TS. Even if those instances with zero weighted 
tardiness for which RBS has not obtained an optimal 
solution are not considered, RBS then gives an average 
deviation equal to 85.59%. In such a situation, SA, GA 
and TS give an average deviation equal to 14.98%, 
14.65% and 18.04%, respectively. Although DPSO and 
DDE outperform the proposed algorithm in terms of 
average deviation, it should be highlighted here that the 

results of DPSO (reported in Ref. 8) as well as DDE 
(reported in Ref. 9) shown in Table 2 are the best results 
amongst several variants, whereas those of ACOGO are 
the best results achieved using only one configuration. 

Finally, the average CPU times (in seconds) of the 
other algorithms (for each run) provided by the 
literature have been as follows: 
 ACOLJ (run on a Pentium 4, 2.8 GHz PC): 4.99, 
 ACOAP (run on a Pentium 4, 2.8 GHz PC): 65, 
 RBS (run on a Pentium 4, 2.8 GHz PC): 0.18, 
 SA, GA as well as TS (run on a Pentium 4, 1.4 GHz 

PC): 27, 
 DPSO (run on a Pentium 4, 2.8 GHz PC): 22.6, 
 DDE (run on a Pentium 4, 3.2 GHz PC): 9. 
Because of the differences in the computer platforms 
used, a direct comparison of the computation times, of 
course, is difficult. However, the average CPU time of 
the proposed ACO algorithm is quite low and 
reasonable. 

5. Conclusions 

In this paper, a novel ant colony algorithm is developed 
for the single-machine total weighted tardiness 
scheduling problem with sequence dependent setup 
times. The main features of the proposed algorithm are 
that the heuristic information is calculated by adopting 
three well-known priority rules as fuzzy sets and then 
aggregating them, and that genetic operators are 
employed to search new regions of the solution space. 
Based on the heuristic information and pheromone 
trails, artificial ants construct solutions to the problem. 
Once all artificial ants have constructed their solutions, 
crossover and mutation genetic operators are 
implemented on the population of the solutions. 
Moreover, a local search is performed to improve the 
best solution found at the iteration. Undoubtedly, 
another feature of the proposed algorithm is that, to 
make the search more directed, at run-time the 
pheromone trails are purposefully updated (locally and 
globally) and limited (between lower and upper 
bounds). The proposed ant colony algorithm has been 
tested on a set of benchmark problems from the 
literature, and compared with other algorithms. The 
computational results demonstrate the superiority of the 
algorithm, in particular when comparing with the 
existing ant colony algorithms. The proposed algorithm 
has also found new best solutions for two instances. 
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Table 2.  Comparison of the proposed ACO algorithm with the other algorithms. 

No. ACOLJ ACOAP RBS SA GA TS DPSO DDE ACOGO 

1 88.61 8.23 271.3 54.43 44.30 55.70 12.03 0.00 8.86 
2 28.66 3.67 64.52 11.93 4.90 3.67 3.79 0.00 2.94 
3 36.72 20.75 91.81 22.32 22.73 22.73 9.83 0.00 8.74 
4 34.59 5.72 104.0 11.74 9.75 13.12 3.36 0.00 1.68 
5 27.69 4.38 67.58 20.45 14.15 19.76 6.24 0.00 3.43 
6 0.00 21.41 94.92 24.62 26.95 33.52 18.04 14.93 16.74 
7 23.88 7.40 61.76 14.54 10.24 13.40 4.90 0.00 3.22 
8 39.47 13.16 450.9 45.61 24.56 50.00 15.79 0.00 6.14 
9 29.07 5.01 38.86 14.65 9.41 15.96 6.03 0.00 1.91 
10 30.35 7.34 52.58 12.34 13.29 20.34 5.34 0.00 4.00 
11 54.61 16.97 182.5 41.47 17.40 49.91 10.78 0.00 15.70 
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
13 42.16 9.61 103.7 48.38 35.55 40.58 5.63 0.00 4.41 
14 77.91 27.91 163.1 42.55 34.26 47.75 21.21 0.00 21.74 
15 192.8 29.15 353.8 95.54 51.24 91.18 29.67 0.00 26.14 
16 58.75 15.63 131.2 44.84 27.45 45.51 6.48 0.00 7.79 
17 626.2 109.8 1283.6 234.4 262.3 323.0 22.95 0.00 104.9 
18 140.3 44.34 260.2 98.13 87.86 126.9 13.30 0.00 39.44 
19 26500 0.00 62400 22800 20800 23100 0.00 0.00 0.00 
20 99.15 20.56 190.1 53.96 40.55 53.62 26.72 0.00 17.72 
21 0.00 0.00 40500 0.00 0.00 0.00 0.00 0.00 0.00 
22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
24 50.15 1.36 454.9 6.29 2.90 6.49 0.97 0.00 0.87 
25 0.00 0.00 55800 0.00 0.00 0.00 0.00 0.00 0.00 
26 0.00 0.00 76300 0.00 0.00 0.00 0.00 0.00 0.00 
27 13700 0.00 134000 0.00 0.00 0.00 0.00 0.00 0.00 
28 1900 0.00 180400 0.00 0.00 0.00 0.00 0.00 0.00 
29 0.00 0.00 22400 0.00 0.00 0.00 0.00 0.00 0.00 
30 37200 13000 137500 16500 18000 26900 0.00 0.00 0.00 
31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
35 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
37 1842.1 273.8 3788.8 605.6 705.6 843.0 73.83 0.00 230.8 
38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
41 6.48 1.67 11.55 3.60 3.98 3.02 0.00 0.20 0.76 
42 5.96 0.63 12.79 2.29 3.53 1.24 0.00 0.04 0.33 
43 3.00 0.95 6.01 1.31 2.05 1.37 0.39 0.00 0.52 
44 5.95 0.12 18.37 1.02 1.35 1.65 0.12 0.00 0.00 
45 6.11 0.00 10.46 1.18 0.63 1.52 0.41 0.00 0.59 
46 11.55 1.59 16.51 3.41 2.69 1.60 0.12 0.00 0.35 
47 4.12 1.07 14.59 1.34 2.73 1.74 0.51 0.00 0.84 
48 6.56 1.00 16.45 0.85 1.51 1.86 0.00 0.00 0.81 
49 5.01 1.01 12.41 2.18 2.57 1.82 0.17 0.00 1.01 
50 12.49 0.83 16.80 3.94 4.80 3.90 0.78 0.00 0.44 
51 11.80 1.73 23.76 7.10 5.47 8.79 0.00 0.04 2.47 
52 11.95 2.10 11.16 6.51 5.56 8.28 0.21 0.67 0.00 
53 13.41 2.92 25.94 7.62 8.20 12.10 2.42 0.00 1.80 
54 4.48 1.66 5.08 8.51 8.95 7.16 0.00 0.35 0.04 
55 12.82 4.30 34.57 9.16 5.71 10.32 4.00 0.00 2.89 
56 16.06 1.51 24.78 7.90 4.77 6.52 0.16 0.00 0.29 
57 4.48 3.07 15.77 7.39 10.04 10.80 0.04 0.00 1.96 
58 16.39 3.79 29.40 8.06 8.49 6.09 0.79 0.00 4.05 
59 9.42 3.92 30.65 6.53 7.46 8.06 0.00 0.40 4.91 
60 19.48 3.40 37.53 13.55 13.31 13.72 4.24 0.00 5.48 
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Table 2.  (Continued). 

No. ACOLJ ACOAP RBS SA GA TS DPSO DDE ACOGO 

61 5.83 0.00 33.43 0.63 1.28 0.71 0.00 0.00 0.00 
62 3.79 0.22 18.37 0.88 0.46 0.00 0.00 0.00 0.03 
63 3.67 0.00 10.94 0.00 1.04 1.69 0.00 0.00 0.00 
64 2.74 0.00 21.58 0.00 0.87 0.14 0.00 0.00 0.00 
65 4.25 0.00 16.52 0.96 2.01 1.63 0.00 0.00 0.00 
66 6.02 0.00 19.94 0.25 2.73 0.66 0.00 0.00 0.00 
67 9.95 0.00 32.51 0.01 0.00 0.01 0.00 0.00 0.00 
68 19.20 0.00 41.27 1.79 3.35 0.13 0.00 0.00 0.00 
69 0.00 10.04 26.62 10.86 11.88 10.30 10.04 10.04 10.04 
70 8.33 0.00 20.21 0.72 0.00 0.60 0.00 0.00 0.00 
71 7.77 0.56 13.21 5.44 3.93 5.64 0.53 0.00 1.34 
72 24.93 4.34 61.73 13.13 11.00 6.83 0.20 0.00 3.29 
73 18.40 0.43 68.92 2.16 5.22 2.44 0.00 0.00 0.14 
74 11.26 6.90 84.74 10.60 18.70 10.10 1.39 0.00 5.41 
75 26.14 5.21 123.2 6.06 6.24 1.21 0.00 0.00 1.80 
76 24.82 3.25 35.72 2.80 8.87 9.72 0.64 0.00 2.25 
77 16.66 2.52 59.91 8.75 9.37 9.71 0.00 0.94 0.95 
78 27.40 5.44 89.54 11.48 13.83 10.44 1.02 0.00 5.09 
79 6.13 2.53 35.82 7.43 5.32 6.38 0.00 0.00 1.91 
80 45.78 3.68 124.6 23.06 12.00 13.30 0.00 0.00 0.00 
81 1.14 0.00 1.60 0.52 0.39 0.73 0.06 0.00 0.00 
82 0.89 0.11 0.65 0.35 0.77 0.35 0.00 0.00 0.00 
83 1.24 0.03 0.48 0.54 0.86 0.49 0.01 0.00 0.02 
84 0.32 0.00 0.15 0.22 0.50 0.55 0.00 0.00 0.00 
85 1.32 0.00 1.10 0.06 0.12 0.37 0.07 0.04 0.10 
86 1.05 0.07 1.07 0.82 0.97 1.01 0.00 0.00 0.00 
87 0.75 0.03 2.37 0.33 0.22 0.54 0.00 0.03 0.03 
88 0.86 0.28 1.11 0.73 0.41 0.71 0.08 0.00 0.17 
89 0.55 0.00 1.78 0.21 1.14 0.22 0.00 0.00 0.00 
90 0.61 0.08 0.94 0.51 0.14 0.30 0.00 0.00 0.08 
91 1.59 0.00 0.34 1.83 1.94 1.46 0.88 0.14 2.36 
92 1.13 0.07 1.00 1.26 1.10 1.29 0.00 0.00 0.10 
93 2.09 0.99 1.48 3.07 2.82 2.92 0.54 0.00 0.90 
94 0.77 0.02 0.94 2.55 3.08 1.92 0.00 0.01 0.17 
95 1.92 0.03 3.27 2.93 0.87 1.95 0.81 0.00 1.10 
96 0.84 0.84 1.83 2.08 3.18 1.42 0.37 0.00 0.29 
97 2.47 0.50 3.32 2.44 2.58 0.94 0.40 0.00 0.36 
98 2.11 0.91 1.04 2.38 3.18 2.14 0.10 0.27 0.00 
99 1.55 1.09 1.09 2.97 4.58 2.86 0.19 0.00 1.14 
100 2.33 1.20 1.57 2.52 1.90 3.38 0.23 0.00 0.55 
101 0.67 0.00 0.46 0.27 0.33 0.12 0.00 0.00 0.00 
102 0.66 0.24 0.91 0.72 0.64 0.23 0.07 0.00 0.22 
103 0.35 0.00 2.36 0.58 0.76 0.56 0.00 0.00 0.00 
104 0.78 0.02 0.30 0.10 0.47 0.07 0.00 0.00 0.02 
105 0.91 0.00 1.71 0.00 0.94 0.32 0.00 0.00 0.00 
106 1.15 0.16 0.90 0.34 0.32 0.61 0.17 0.00 0.13 
107 0.38 0.17 1.22 0.17 1.22 0.44 0.03 0.00 0.00 
108 1.14 0.14 1.37 0.57 0.87 0.42 0.00 0.00 0.14 
109 0.46 0.10 1.51 0.05 0.66 0.26 0.00 0.00 0.00 
110 0.55 0.00 1.51 0.54 0.78 0.17 0.00 0.00 0.00 
111 1.31 1.17 2.56 2.49 2.13 1.88 0.00 0.00 0.35 
112 1.67 1.64 1.46 1.75 3.13 2.75 0.58 0.00 1.01 
113 0.84 0.09 4.28 1.10 0.41 0.60 0.00 0.27 0.04 
114 1.33 0.13 3.21 2.06 2.00 1.83 0.00 0.29 0.08 
115 0.42 0.11 0.54 2.36 1.50 2.87 0.13 0.00 0.24 
116 0.00 1.02 2.24 3.63 2.84 2.92 0.95 0.63 1.08 
117 1.88 0.77 2.43 3.03 4.61 2.05 0.07 0.00 0.26 
118 0.68 1.76 4.71 1.96 3.18 2.46 0.28 0.00 1.19 
119 1.92 0.15 0.48 1.48 1.16 1.12 0.00 0.00 1.01 
120 0.61 0.34 1.28 1.93 2.98 2.71 0.00 0.00 0.90 

Average 694.4 114.5 5990.7 342.2 337.7 434.4 2.76 0.24 5.03 
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