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Abstract. Jacket transform inspired by the well-known Hadamard transform, has been attracting 
more and more attentions due to its orthogonality, simpleness of its inversion and fast algorithms. It 
has also been applied to signal processing, image compression, mobile communication, quantum 
coding, and so on. In this paper, we firstly propose the r-circulant block Jacket transform (r-CBJT) 
to extend the Jacket transform family, and then we suggest an approach for the elegant construction 
of the r-circulant block Jacket matrices (r-CBJMs) with any size by using the structure of the 
permutation matrices. After that, the fast construction and decomposition algorithms for the 
r-CBJMs can be designed with the Kronecker product of corresponding identity matrices and 
relative lower order Jacket matrices in a successively iterative form. It has a less computation 
complexity compared to direct calculation approach, which is vitally important and practical to 
some real-time applications, such as high-speed mobile wireless communication, instant audio and 
video transmission, fast encoding and decoding, and so on.  

1. Introduction 
Jacket transform motivated by the center weighted Hadamard transform [1] [2], is an orthogonal 

transform with lots of advantages that are very useful in the practical applications involving matrix 
transform. Also, its corresponding inverse can be derived just by calculating its element-wise or 
block inverse. Mathematically, given a nonsingular jacket matrix ( )n kt n nJ j ×= , then the ( )k t,   
entry of its inverse matrix is equal to the product of 1 n/  and the inverse of the element in the ( )t k,   
position. In other words,                                  

1 1 1 1 1( ) ( )RT
n kt n n n n n

tk

J j J
n n j

− −
× ×= = =                (1) 

where ‘R’ and ‘T’ denote reciprocal and transpose operations respectively. Jacket transform and its 
corresponding matrices have been extensively investigated. From the aspect of the matrix transform 
theory [3], Jacket transforms, such as co-cyclic Jacket transform [4], block Jacket transform [5], 
center weighted block Jacket transform [6], blind-block parametric Jacket transform [7], Jacket harr 
transform [8], have been presented and investigated one after another, while from the aspect of the 
practical applications, there exist literatures relevant with signal processing [9], image compression 
[10], quantum information system for quantum coding [11], wireless mobile communications for 
pre-coding, coding and decoding [12] [13] [14], new emerging 3G and 4G MIMO communication 
[15], encryption and decryption [16], and so on.  

Furthermore, lots of widely used transforms, such as WHT [2], DFT [17], DCT, HWT [8], slant 
transform all belong to the Jacket transform family. In other words, applications that have adopted 
the above-mentioned transforms can theoretically employ the corresponding Jacket transform. 
Meanwhile, Jacket matrices have close relation with well-known interesting matrices such as 
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unitary matrices, hermitian matrices, Hadamard matrices and so on, which are of vital importance in 
digital signal and image processing, orthogonal code design, cryptography, quantum information 
systems, mathematics and physics, etc.  

Recently, there exist many papers surrounding block Jacket transform and corresponding 
applications. Fast block inverse Jacket transform was firstly introduced in [18], which proposed 
one-dimensional and two-dimensional fast algorithms for realizing the block inverse Jacket 
transform with size of 2kN = and 3k . After that, center weighted block Jacket transforms were 
proposed for weighing the region of mid-spatial frequencies of the signal more than the Hadamard 
transform in [6], meanwhile, fast algorithms were also derived based on the sparse matrix 
factorization. Later, based on the well-known Pauli matrices, a generalized block Jacket transform 
was defined, and also fast algorithms for fast constructing and decomposing block Jacket matrices 
with any size were derived based on certain recursive relations [19]. Compared to the conventional 
block inverse Jacket transform, [5] proposed a block-wise inverse Jacket transform and also 
obtained one-dimensional and two-dimensional fast algorithms with lower complexity. Besides, 
there also exist associative practical applications, such as quantum coding [11], Arikan and 
Alamouti code design [9], LDPC [12], pre-coding for Multi-user MIMO broadcast channels [15], 
and so on.  

While unfortunately, as far as we are concerned, just as the circulant matrices to the matrix 
family, the circulant and even generalized version of block Jacket transform is still absent. So this 
paper is to fucus on this topic. Contributions of this paper are list as follows, (1) The structure of the 
r-CBJMs is presented for the first time, meanwhile, based on this elegant structure, some special 
cases were discussed. (2) Method for constructing the r-CBJMs with any size are extensively 
studied and successfully derived. (3) Fast algorithms of the r-CBJMs’ construction and factorization 
were found, which has a relatively lower computation complexity than direct computation 
algorithm and promises a prospect in the practical applications. (4) The proposed construction 
method and fast algorithms are also applicable to the other r-CBJMs with similar characteristics.  

The remainder of this paper is outlined as follows. Section 2 mathematically proposes the 
structure of the r-CBJMs, and later, for clarity, some special cases are presented. After that, method 
for constructing r-CBJMs with any size is extensively investigated and ultimately obtained in 
Section 3. Section 4 further derives the algorithms for fast constructing and decomposing r-CBJMs. 
Fast algorithms of r-CBJMs with size 1 to 20 and the complexity analysis for both direct algorithm 
and fast algorithm are all illustrated in section 5. Section 6 makes a conclusion in the end. 

2. The structure of r-CBJMs 
After reviewing some concepts and notations, the structure of the r-CBJMs is subsequently 

presented. An n n×  block matrix[ ]n N pC = / , where[ ]⋅ denotes block matrix and the subscript means 
the number of p p×  sub-matrices or blocks in a single row or column throughout this paper, is 
called as a r-circulant block matrix if it has the following form,  

 

0 2 1

31 2

1 1 0

[ ]

n n
p p p

nn n
pp p

n N p

n
p p p n n

R R R
rR R R

R

rR rR R

− − 
 

− − −
 
 = /  
 
 −  
  ×

= ,





   



             (2) 

where i
pC , {0 1 1}i n∈ , , , −  are p p× sub-matrices or blocks of complex or real-valued elements 

with serial number {0 1 1}i n∈ , , , −  and r is a non-zero number. Supposing 1p = , the n n×  
r-circulant block matrix becomes an n n×  r-circulant matrix.  

Besides, for an N N×  matrix NJ , its associative matrix RT
NJ  is formed from the matrix NJ  

by taking the reciprocal of each element of and exchanging its row and column indices. In other 
words, entry of the RT

NJ  matrix in the position ( )k i,  is equal to the reciprocal of the ( )i k,  
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element of the original matrix.  
Definition 2.1 An N N×  matrix ( )N i k N NJ j , ×= , {0 1 1}i k n, ∈ , , , − , is called a Jacket matrix, 

if NJ  is reversible and the ( )i k,  entry of its inverse matrix is equal to the product of 1 N/  and 

the inverse of the element in the ( )k i,  position of NJ .  
Definition 2.2 An n n×  r-circulant block matrix [ ] ( )n N p jk N NC C= / ×=  with p p×  Jacket 

blocks and N np=  is called a r-circulant block Jacket matrix if it is also a Jacket matrix. 
Especially, supposing 1p = , [ ]n N pC = /  is just r-circulant Jacket matrix.  

Example 2.1 For a given nonzero number r, the subsequent matrix 2

1r i
J

r r i

 ± | |
=   ± | | 

 is a 

r-circulant Jacket matrices because of the following constraint  

 
1 2

1
2 2 1 2

1( )1 1
2 2 1 ( )

RT i rr
J J

i r

− /
−

− /

 /| |
= = .  | | 





             (3) 

  
Example 2.2 Let ω  be the complex third root of unity. The matrix below  

 3

1 1
1

1

r
J r r

r r r

ω
ω

ω

± | | 
 = ± | | 
 ± | | 

               (4) 

is also a r-circulant Jacket matrix, since the following constraint is satisfied,  

 1
3 3

1 1 1 ( )
1 1 1 ( ) 1 1
3 3

1 1 ( ) 1

RT

r r r
J J r r

r

ω
ω

ω

−

/ / ± | | 
 = = / ± | | / . 
 / ± | | 

         (5) 

The above-mentioned two r-circulant Jacket matrices are special cases of r-circulant block Jacket 
matrices when 1p = . if 1r = , the derived two r-circulant Jacket matrices become two circulant 

Jacket matrices, simultaneously. While 1r = − , the two matrices are anti-circulant Jacket 
matrices.  

Subsequently, we further discuss the general form of 4 order r-circulant Jacket matrices. A 

r-circulant matrix 4J  may be generally denoted as  

 

0 1 2 3

3 0 1 2
4

2 3 0 1

1 2 3 0

a a a a
ra a a a

J
ra ra a a
ra ra ra a

 
 
 
 
 
 
 
 
 
 
 

= ,  

where {0 1 2 3}ia i, ∈ , , ,  are all none zero numbers. Based on the characteristics of jacket matrix, the 
following equation exists,  

 1 3 0 1 0 1
2 2
0 1 2 3

1 1 1 0ra a a a a a
a a ra a

    
+ + + = .    

    
              (6) 

 According to Eq.(6), there exist three cases. Case 1, if ( )1 3
2
0

1 0ra a
a

+ =
, 4J  can be denoted as,  

 

3 31 1 1 1
4 2 4 4 2 4

1 1 1 1 1 1
4 4 2 4 4 2

1 1 1 1 1 1
2 4 4 2 4 4

3 31 1 1 1
4 2 4 4 2

0 00 0 0 0 0 0

0 0 0 0 0 0 0 0
4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

a a r a r a r a ia r a r ia r
a r a a r a r ia r a ia r a r

J or
a r a r a a r a r ia r a ia r
a r a r a r a ia r a r ia r

 − − − − − −
 
 
 − − − −
 
 

− − 
 
 
 
 

± ± − ±
± ± ± −

=
± − ± ±

± ± − ±









4
0a

 
 
 
 
 
 
 
 
 
 
 

.     (7) 
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Case 2, if ( )0 1
2
1

1 0a a
a

+ = , 4J  can be calculated as,  
3 31 1 1 1

4 2 4 4 2 4

1 1 1 1 1 1
4 4 2 4 4 2

1 1 1 1 1 1
2 4 4 2 4 4

3 31 1
4 2 4 4

0 00 0 0 0 0 0

0 0 0 0 0 0 0 0
4

0 0 0 0 0 0 0 0

0 0 0 0 0 0

a ia r a r ia r a ia r a r ia r
ia r a ia r a r ia r a ia r a r

J or
a r ia r a ia r a r ia r a ia r
ia r a r ia r a ia r a r

 − − − − − −
 
 
 − − − −
 
 

− − 
 
 
 
 

± ± − ±
± ± ± −

=
± − ± ±

± ± −









1 1
2 4

0 0ia r a

 
 
 
 
 
 
 
 
 
 
 

.

±

 (8) 

Case 3, if ( )0 1

2 3
1 0a a

ra a+ = , 4J  can be changed to,  
1 1
2 2

1 1
2 2

1 1
2 2

1 1
2 2

0 1 0 1

1 0 1 0
4

0 1 0 1

1 0 1 0

a a a r a r
a r a a a r

J
a r a r a a
ra a r a r a

 − −
 
 

− 
 
 
 
 
 
 
 

±
±

= .
±

±









  (9) 

From the above three cases, 4J  conforms to the following form,  
1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

1 1 1 1
2 2 2 2

0 01 0 1 1 0 1

1 0 1 0 1 0 1 0
4

0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0

a a r a r a a a r a r a
r a a a r a r a a a r a

J or
r a r a a a r a r a a a
ra r a r a a ra r a r a a

   − − − −
   
   

− −   
   
   
   
   
   
   
   

− −
− −

= .
− −

− −

 (10) 

 
This section has been presented the structure of r-CBJMs, meanwhile, some special cases are 

also illustrated for clarity. In the following section, we will discuss the method for constructing 
r-CBJMs with any size.  

3. Construction method for the r-CBJMs 
Before studying the general method for forming the r-CBJMs with any size, let’s firstly discuss 

the constructing method for r-CBJMs with the lowest size.  
3.1. Method for constructing the r-CBJMs with size 2 

Theorem 3.1 Let a r-circulant block matrix with size 2 be 
0 1

2 1 0
[ ] p p

p p

R R
R

rR R

 
 
 
 
 
 

= , where {0 1}i
pR i, ∈ ,  

are both Jacket matrices, then 2[ ]R  is a Jacket matrix if and only if the subsequent condition is 
satisfied,  

0 1 1 0( ) ( ) 0RT RT
p p p pR R rR R+ = .   (11) 

 
Proof Since {0 1}i

pR i, ∈ ,  are both Jacket matrices, there exists ( ) {0 1}i i RT
p p pR R pI i= , ∈ , . Also 

there exists,  
0 1 0 10 1 1 00 01 1

2 2 1 0 1 0 1 0 1 00 1 1 0

10 1

( ) ( ) ( ) ( )
[ ] [ ]

( ) ( ) ( ) (

                

)

12 ( )
  

RT RT RT RT RT
p p p pp p p pRT p pp p

RT RT RT RT
p p p p p p p pp p p p

RT RT
p p pp

R R R RR R rR RR R R R
R R

rR R rR R rR R rR RR R R R

pI R RR
r

   
   
   
   
   
   

 + +
 = =
 + + 

+
=

0

1 00 1

( )

2( ) ( )

p

RT RT
p p pp p

R

rR R pIR R

 
 
 
 
 
 
 
 

.
+

 (12) 

So 2[ ]R  is a Jacket matrix, if and only if 1 0 0 1( ) ( ) 0RT RT
p p p prR R R R+ =  exists.   

Example 3.1.1 Supposing 16r = , 0 1 1
1 1pR  

=  − 
 and 

1 1
4 41

1 1
4 4

pR
− 

=  − − 
. It is simple to check 
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that Eq.(11) holds, then 
0 1

2 1 0
[ ] p p

p p

R R
R

rR R

 
 
 
 
 
 

=  is a r -CBJM with size 2  

3.2. Method for constructing the r-CBJMs with size 3 

Theorem 3.2 Let a r-circulant block matrix with size 3 be 

0 1 2

2 0 1
3

1 2 0

[ ]
p p p

p p p

p p p

R R R
R rR R R

rR rR R

 
 
 
 
 
 
  
 

= , where 

  {0 1 2}i
pR i, ∈ , ,  are both jacket matrices, then 3[ ]R  is a Jacket matrix if and only if the subsequent 

conditions are both satisfied,  
0 2 1 0 2 1( ) ( ) ( ) 0RT RT RT
p p p p p pR R rR R rR R+ + =   (13) 
0 1 1 2 2 0( ) ( ) ( ) 0RT RT RT
p p p p p pR R R R rR R+ + = .    (14) 

Proof Let elementary matrix with size 3  be 3

0 1 0
0 0 1

0 0r

 
 Π =  
 
 

, then the new proposed matrix 

and its associative matrix can be respectively written as, 20 1 2
3 3 3 3[ ] p p pR I R R R= ⊗ +Π ⊗ +Π ⊗  and 

20 1 21 1
3 3 3 3[ ] ( ) ( ) ( )RT RT RT RT

p p pr rR I R R R= ⊗ + Π ⊗ + Π ⊗ .  Then, 3 3[ ] [ ] RTR R  can be further calculated 
as, 

2 20 1 2 0 1 2
3 3 3 3 3 3 3 3

0 1 22 0 1
3 3

2 0 11
3

           

1 1[ ] [ ] ( ) ( ) ( )

13 (       

              

) ( ) ( )

1 1( ) (       

RT RT RTRT
p p p p p p

RT RT RT
p p p pp p p

RT RT
p pp

R R I R R R I R R R
r r

I pI R R RR R R
r

R RR R
r r

 
 
 

 = ⊗ +Π ⊗ +Π ⊗ × ⊗ + Π ⊗ + Π ⊗ 
 

 = ⊗ +Π ⊗ + + 
 

+Π ⊗ + 22 0) ( )RT
pp pR R + . 

 

(15) 

Therefore, 3 3 3[ ] [ ] 3RT
pR R I pI= ⊗  holds if and only if 0 2 1 0 2 1( ) ( ) ( ) 0RT RT RT

p p p p p pR R rR R rR R+ + =  and 
0 1 1 2 2 0( ) ( ) ( ) 0RT RT RT
p p p p p pR R R R rR R+ + =  are both satisfied. So theorem 3.2 is tenable.  

Example 3.2.1 Suppose r i= − , 0
2

1 0
0 1

R  
=  − 

, 1 03
2 22

iR R+=  and 2 01 3
2 22

iR R−= , so we can 

check that Eq.(13) and Eq.(14) hold. Then 

0 1 2
2 2 2

2 0 1
3 2 2 2

1 2 0
2 2 2

[ ]
R R R

R rR R R
rR rR R

 
 
 
 
 
 
  
 

=  is a r-CBJM with size 3.  

3.3. Method for constructing the r-CBJMs with any size 
Theorem 3.3 Let a r-circulant block matrix with size n be as follows,  

0 2 1

31 2

1 1 0

[ ]

n n
p p p

nn n
pp p

n N p

n
p p p n n

R R R
rR R R

R

rR rR R

− − 
 

− − −
 
 = /  
 
 −  
  ×

= ,





   



  (16) 

where {0 1 1  }i
pR i n, ∈ , , , −  are all jacket matrices, then [ ]nR  is a Jacket matrix if and only if the 

subsequent condition is satisfied,  
1

( )mod

0
0 {  1 2 1}

n j i
n

n RTfloor j n j i n
p p

j
r R R i n

+ −−     + −             =

= , ∈ , , , − .∑ 
 (17) 
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Proof Let an n n×  elementary matrix be 

0 1 0

0 0 1
0 0r

 
 
 Π =
 
 
 



   





, then 0
nIΠ =  and n

nrIΠ = . 

[ ]nR  and [ ] RT
nR  can be respectively denoted as  

( )
1 1

1

0 0

[ ][ ] ( ), ( )
n n RTRTi i n j j

nn p pr
i j

RR R R
− −

−

= =

= Π ⊗ = Π ⊗∑ ∑ . 

So [ ] [ ] RT
n nR R  can be further transformed as,       

1 1
( )

0 0

1 1 1
0 ( 1) ( 1) ( ) ( )

1 0

1[ ] [ ] ( )

1 1( ) ( )(                 ) ( ) )  ( ) (

n n RTRT i i n j j
n n p p

i j

n i nRT RT RT RTj i j jn j n i j j i
n p p p p pp p p p

j j j i

R R R R
r

I npI R R R RR R R R
r r

− − 
  −
 
 

= = 

− − −
− − − + −

= = =

 
= Π ⊗ × Π ⊗ 

 
  

= ⊗ +Π⊗ + +, ,+ Π ⊗ +  
  

∑ ∑

∑ ∑ ∑

2
1 1 0

0

.

     1 (                )( ) ( )
n RT RTn j nn i j

p pp p
j

R RR R
r

−
− −− +

=





 
+, ,+ Π ⊗ + 

 
∑

 (18)                                                                                                                                                 

Therefore, [ ] [ ] RT
n n n pR R I npI= ⊗  if and only if  

1
( )mod

0
0 {1 1}

n j i
n

n RTfloor j n j i n
p p

j
r R R i n

+ −−     + −             =

= , ∈ , , −∑ 

.   

Example 3.3.1 Supposing 1r = − , 2p = , 0 1
2 2 2 {2 3 1 }ia b a a

C C C i n
a b b b
   

= , = = , ∈ , , , −   − −   
  

and ( ) ( )( )1 222 4 5 0a n n n b ab
/

= − ± − + , ≠ , so we can check 

0 11
2 22

1 11
2 22

01 1
22 2

[ ]n

C C C

C
C C C
C C C

 
 
 
 
 
 
 
 
 
 
 

=
− −
− −



   





is a 

r-CBJM with size n .  

4. Fast algorithms 
Based on the above section, r-CBJMs with any size can be successfully constructed. While there 

is another problem whether there exist fast algorithms for more efficiently constructing and 
factorizing r-CBJMs. The following section will focus on the subject, which is of vitally theoretic 
and practical importance concerning with relatively larger size matrix transform.  
4.1. Fast construction algorithms 

Theorem 4.1 A r-CBJM with size [ ] k jn q p
R

=
, where p  and q  are co-prime numbers, can be 

efficiently constructed in the following way,  

1 1
1 1

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]k j i k i jk j

j k

q p p i p p i pn q p
i i

R I I R I I R I I− −− −=
= =

     
= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ,     

     
∏ ∏  (19) 

where lower order r-CBJMs [ ]pR and [ ]qR can be obtained from the above sections.  
Proof There are two steps to prove the above theorem. Firstly, by using inductive method to 

derive the following equation,    

1

1

[ ] [ ] [ ] [ ]k i ik

k

q q qn q
i

R I R I− −
=

=

= ⊗ ⊗ .∏   (20) 
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If 1k = , [ ] kn q
R

=
 can be transformed as 0 01

1

1

[ ] [ ][ ] [ ] [ ] qq q qn q
i

R RI R I
=

=

= ⊗ ⊗ =∏ . Next, if k L= , 

1

1

[ ] [ ] [ ] [ ]L i iL

L

q q qn q
i

R I R I− −
=

=

= ⊗ ⊗∏  can be obtained. Subsequently, when 1k L= + , Eq.(20) can be 

written as,  
( )( )

( )

1

1

1 1

1

1

1

[ ] [ ] [ ] [ ] [ ]

.[ ] [ ] [ ] [ ] [ ] [ ]

[ ] [ ] [

              

              ]

L LL

L i i L

L i i

q q q qn q

L

q q q q q q
i

L

q q q
i

R I R R I

I I R I R I

I R I

+

− −

+ − −

=

=

+

=

= ⊗ ⊗

  
= ⊗ ⊗ ⊗ × ⊗  

  

= ⊗ ⊗

∏

∏

 (21) 

So, Eq.(20) is proved. Similarly, 1

1

[ ] [ ] [ ] [ ]j i ij

j

p p pn p
i

R I R I− −
=

=

= ⊗ ⊗∏ exists. Secondly, [ ] k jn q p
R

=
can 

be obtained by,  
( ) ( )

1 1

1 1

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ] [ ] [ ]             [ ] 

k j k jk j

k j i i k i i j

q p q pn q p

j k

q p p p q q q p
i i

R I R R I

I I R I I R I I− − − −

=

= =

= ⊗ × ⊗

      
= ⊗ ⊗ ⊗ × ⊗ ⊗ ⊗ .      

     
∏ ∏

 (22) 

So theorem 4.1 is proved. This theorem suggests a fast algorithm for construction of r-CBJMs. 
When 0j =  or 0k = , r-CBJMs with size 2mn = , 3mn = , 5mn =  and so on, can be efficiently 
constructed, meanwhile 

6 2 3
[ ] [ ]m m mR R= can also be fast constructed based on the relatively lower 

order Jacket matrices 2[ ]R and 3[ ]R using 6 2 3 3 2[ ] ([ ] [ ] ) ([ ] [ ] )R R I R I= ⊗ × ⊗ with k j m= = , 2q =  
and 3p = .  
4.2. Fast decomposition algorithms 

The above section surrounded the algorithm for fast constructing r-CBJMs, while in this section, 
attention will be paid to how to efficiently decompose r-CBJMs, which is also of the same 
theoretical and practical importance to the corresponding matrix transform.  

Theorem 4.2 Supposing a r-CBJM [ ] j kn q p
R

=
, if [ ]nR  is factorable until [ ]qR and [ ]pR . Then 

[ ]nR can be decomposed according to Eq.(19).  
Proof If [ ]nR is factorable until [ ]qR and [ ]pR , the decomposition algorithm is feasible. This 

procedure is a reverse one of its construction. Thus, the proof is obvious. For example, supposing a 
r-CBJM 15[ ]R , then its corresponding decomposition signal flow graph is shown as in Figure 1 with 

3 4 2 3 2 2 2 3 3 2 2[ ] ([ ] [ ] [ ] )([ ] [ ] [ ] )([ ] [ ] [ ] )nR I R I I R I I R I= × = ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ . Meanwhile, in practice such as 
signal processing, the employed matrices with large size are always factorable. For some special 
cases, in which [ ]nR is not factorable, one should use other special way to process.  

5. Complexity analysis of r-CBJMs 
In the section 4, fast algorithms of r-CBJMs with any size have been obtained in an elegant form. 

This section gives a comparison between the direct computation algorithm and the fast algorithms.  
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Fig.1. Signal flow graph for fast decomposing r-CBJM with size 12    

 
Before making a research on the complexity analysis of fast algorithms, Table I lists construction 

and decomposition approaches for r-CBJMs [ ] {1 0  2 2 }iR i, ∈ , , , . The second column of the table 
denotes the prime factor decomposition methods for these numbers while the fast algorithms are 
shown in the third column. Compared to direct computation algorithms, fast algorithms require less 
number of mathematical operations. Table II illustrates the differences between them in details, 

where 1

i
n

k
i

i

N p
=

=∏
denotes the prime factor factorization of the matrix size and , , {1,2,..., n}i ip k i∈ denote 

corresponding prime factors and its power order. From the table, we can check that when 27N = , 
direct computation algorithms needs 702  additions and 729  multiplications, respectively, but by 
using fast algorithm, the numbers of additions and multiplications can be reduced to 162  and 108 , 
respectively. Thus, compared to the direct computation, the proposed fast algorithms have less 
computation complexity, and are especially more suitable for some applications with high request 
for real-time performance.   

Table I Prime factor decompositions of numbers and corresponding r-CBJMs 

SN  Numbers  r-CBJMs  
1  1 1=  1 1[ ] [ ]R R=  
2 2 = 2 2 2[R] [ ]R=  
3 3=3 3 3[R] [ ]R=  
4 4 = 2 2  2

4 2[ ] [ ]R R ⊗=  
5 5=5 5 5[R] [ ]R=  
6 6 2 3= ×  6 2 3[ ] [ ] [ ]R R R= ⊗  
7 7=7 7 7[R] [ ]R=  
8 38 2=  

3
8 2[ ] [ ]R R ⊗=  

9 29 3=  
2

9 3[ ] [ ]R R ⊗=  
10 10 2 5= ×  10 2 5[ ] [ ] [ ]R R R= ⊗  
11 11 = 11 11 11[R] [ ]R=  
12 12 = 2

2 3×  
2

12 2 3[ ] [ ] [ ]R R R⊗= ⊗  
13 13 = 13 13 13[R] [ ]R=  
14 14 2 7= ×  14 2 7[ ] [ ] [ ]R R R= ⊗  
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15 15 3 5= ×  15 3 5[ ] [ ] [ ]R R R= ⊗  
16 416 2=  

4
16 2[ ] [ ]R R ⊗=  

17 17 17=  17 17[ ] [ ]R R=  
18 218 2 3= ×  

2
18 3 2[ ] [ ] [ ]R R R⊗= ⊗  

19 19 = 19 19 19[R] [ ]R=  
20 220 2 5= ×  

2
20 2 5[ ] [ ] [ ]R R R⊗= ⊗  

 
 

Table II Complexity analysis of FR-CBJT. (DCA and FR-CBJT denote direct computation 
algorithm and fast algorithms of r-CBJT, respectively.) 

N  OP DCA FR-CBJT 

kN p=  ADD ( 1)N N−  ( 1)kkp p −  
MUL 2N  1 2( 1)kkp p− −  

1

i
n

k
i

i

N p
=

=∏  
ADD ( 1)N N−  

1
( 1)i

n
k

i i i
i

k p p
=

−∑  

MUL 2N  { }2

1
( 1)ii

i

n
kk

i ip
i

p p
=

−∑  

 

6. Conclusion 
In this paper, we firstly proposed a generalized circulant block Jacket transform named by 

r-CBJT, and then investigated its elegant structures. After that, we further explored existence 
condition for the r-CBJTs’ matrices with any size, which suggests a construction method for the 
r-CBJTs. Subsequently, algorithms for fast constructing and decomposing r-CBJMs were 
successfully derived based on the Kronecker product of the permutation matrices and corresponding 
lower order block Jacket matrices with a successively recursive forms. Compared to direct 
computation algorithms, the proposed fast algorithms possess a lower computation complexity. The 
further study will surround other fast algorithms of r-CBJTs, parametric or factional Jacket 
transforms or certain an actual application of Jacket transform. 
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