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Abstract. Proposed is an affine projection sign algorithm with a nonlinear error scalar matrix to 
improve the robustness and the tracking performance against non-Gaussian impulsive interferences. 
The error scalar matrix scalars down the errors of some projection directions in the presence of 
impulsive noise. The major contribution of the letter is that variable error nonlinearity methods used 
in normalized least mean square (NLMS) can be applied to the scalar matrix with a little 
modification. An ideal scalar matrix is presented in the simulation environment of the two 
component Gaussian mixture noise model. Although a closed-form solution of the ideal matrix 
cannot be obtained in practice, it provides us a heuristic consideration about how to design the 
scalar matrix and theoretically best learning curves that the proposed method can achieve. We also 
discuss a practical method to approximate the optimal learning curve. Improved performance of the 
proposed algorithm is demonstrated in a system identification scenario. 

Introduction 
The family of normalized sign algorithms (NSAs) are known for their better robustness against non-
Gaussian impulsive noise in comparison with the conventional NLMS [1]. Their convergence 
performance can be further improved by using the nonlinear transformation of the error signal [2-4]: 
the switched norm algorithm in the applications of system identification and acoustic echo 
cancellation [2], the logarithmic transformation in the context of active noise control [5-7], and the 
tan transformation tested in system identification [8] etc.  Unfortunately their major drawbacks are 
performance degradation with correlated input signals. It is known that the affine projection sign 
algorithm (APSA) achieves faster convergence performance over NSA against correlated input 
signal, lower computational complexity and better robustness than the conventional affine 
projection algorithm (APA) [9-10]. However, it shows poor steady-state performance.  In this letter, 
we report a novel APSA with a nonlinear error scalar matrix, which is obtained by using the 
nonlinear transformation of error signals. Small scalar factors are given to error signals corrupted by 
impulsive noise, which eliminates the possibility of updating weight vector based on the wrong sign 
information of the error signals owing to the impulsive noise. Both ideal and practical scalar 
matrices are discussed and computational complexities are also derived. The performances of 
proposed algorithms are tested in a system identification scenario. 

Error scalar matrix APSA (ESM-APSA) 

Consider the desired signal id that arise from the system identification model T
i i o id v= +u w , where 

ow is an unknown system be estimated, iu denotes the input vectors ( )1 1,  ,  , T
i i i i Lu u u− − +=u  , and iv is 

background noise plus impulsive noise. The a priori and a posteriori error vectors are 1
T

i i i i−= −e d U w  
and ,

T
p i i i i= −e d U w , where the desired output signal ( )1 1,  ,  ,  T

i i i i Kd d d− − +=d  , the data matrix [ ]1 1, ,  , i i i i K− − +=U u u u , 
and iw is the estimate of ow at iteration i . The optimization criterion with an error scalar matrix for 
APSA can be written as [9] 

                       , 1
min K p i

iw
I e    Subject to   2 2

1 2i i µ−− ≤w w                            (1) 
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Where KI is the identity matrix, 2µ is the minimum disturbance constraint. Although it improves the 
convergence rate of the NSA by using past input vectors especially for correlated input signals [9], 
the same weights to past error signals are unbeneficial to the weight vector update. What we would 
like, in fact, is to make the error signals corrupted by impulsive noise contribute little or even none 
to the weight vector update. Therefore, we propose to use a scalar matrix iλ to replace the fixed 
matrix KI in (1), where { }1 1=diag , ,  , i i i i Kλ λ λ− − +λ   is a diagonal matrix, and its diagonal elements satisfy 
the following condition 10 1,   1i j j Kλ − +≤ ≤ ≤ ≤ . Using the method of Lagrange multipliers, the cost 
function can be obtained: 

( ) ( )2 2
, 1 21i i p i i iJ γ µ−= + − −w λ e w w                              (2) 

Where γ is the Lagrange multiplier, and 1
⋅ is 1 norm− of a vector. By setting the derivative of the cost 

function (2) with respect to the weight vector iw to zero, and using the constraint in (1), we obtain 
the update equation: 

( )
( ) ( )

1

sgn

sgn sgn
i i i

i i T T T
i i i i i i

µ
−= +

U λ e
w w

e λ U U λ e
                               (3) 

Noted that the posterior error vector ,p ie is inaccessible in practice, it is reasonable to replace it by 
the a priori error vector ie [9]. Equation (3) reduces to the conventional APSA when iλ is the identity 
matrix. Therefore it can be view as a generalization of APSA. 

Optimal nonlinear error scalar matrix (0NESM) 
In order to obtain the optimal scalar matrix, the simulation model of the impulsive noise should be 
introduced first. The interference iv can be modelled as a two component Gaussian mixture [3][7-10]: 

i i i iv n k A= + where in and iA are each zero-mean independent white Gaussian sequences with 
variances 2

nσ and 2
Aσ ; ik is a Bernoulli random process, with a probability of success [ ]1i rP k p= = .The 

ideal nonlinear error scalar matrix can be obtained based on above model: 
1

1
1

01
                 = 1, 2, ..., 

10
i j

i j
i j

k
j K

k
λ − +

− +
− +

=
=  =

                     (4) 

According to (3) and (4), the error signals contaminated by impulsive noise are instantly scaled to 
zeros to eliminate their influences to the weight vector update. Although (4) can be simulated in 
computer simulations, it cannot be put into practice. That is because the two component Gaussian 
mixture model no longer holds in practice and the occurrence probability of the outliers is 
unavailable. But it can be viewed as the optimal learning curve reference in simulations. Because 
the optimality and the nonlinear transformation (4), this method can be termed as ONESM-APSA. 
It requires 2 1KL L+ + multiplications and averaging ( )2KL pr L− + additions at each time instant. The 
computational complexity of APSA and its fast implementation method can be found in [11-12]. 

Practical nonlinear error scalar matrix APSA (NESM-APSA) 
The major advantage of the proposed scheme is that various nonlinear error transformation methods 
in NLMS [2-7] can be easily modified and then applied to (3). We specifically discuss a low 
computational complexity method inspired by a nonlinear transformation used in [4]. The error 
scalar matrix can be written as: 

( )2

1 1 11/ 1 ,       = 1, 2, ..., i j i j i je j Kλ γ− + − + − += + u                       (5) 

Where 1i je − + is the  thj element of the a priori error vector? As can be seen from (5), when the 
magnitude of the normalized error is small, the scalar factor 1 1i jλ − + ≈ . On the other hand, a larger 
magnitude of the normalized error leads to the expected result 1 0i jλ − + ≈ . γ Is a positive constant to 
balance the steepness and the gentleness degrees of the transformation: a large γ results in a steep 
slope, and vice versa? Therefore, (5) act as an approximation of the ideal error scalar matrix (4). 
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This algorithm requires 3 4 2 1KL K L+ + + multiplications and averaging 2KL K L+ + additions at each time 
instant.  

Simulation results 
The performance of proposed algorithms was tested in a system identification scenario. The system 
to be identified is randomly generated with 512 taps, and the adaptive filter is assumed to have the 
same number of taps. The input signals were obtained by filtering a white, zero-mean, Gaussian 
random signal through a first-order AR system ( ) ( )11 1 0.7G z z−= − . The output signal-to-noise ratio 
(SNR) was set to 30 dB for additive Gaussian white noise. The probability of the occurrence of 
impulsive noise rp was chosen as 0.1. We set the power of iA to 2 21000A yσ σ=  where 2

yσ be the power of 
the system output T

i i oy = u w . The projection order K was set to 10. The convergence performance 
was evaluated by the normalized MSD (NMSD 2 2

10 2 2
=10log ( )i oNMSD w w where i i o= −w w w . We 

compared proposed algorithms with NSA, APSA, and Scalar NLMS (SNLMS) in [7].The learning 
curves were obtained by ensemble averaging over 30 independent trails. 
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(a) APSA, µ=0.01
(b) APSA, µ=0.0015
(c) NSA, µ=0.008
(d) SNLMS, µ=0.6 γ=80
(e) SNLMS, µ=0.28 γ=160
(f) ONESM-APSA, µ=0.006
(γ) NESM-APSA, µ=0.006
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Fig. 1 NMSD learning curves for NSA, APSA, SNLMS, ONESM-APSA, and NESM-APSA ( 40γ = ) 

In the simulations, the values of step-size and γ are chosen to have the same convergence rate or 
the same steady-state mismatch as the proposed scheme. As it can be seen from Fig. 1, by using 
nonlinear error transformation method, the SNLMS obtains a good initial convergence while the 
NSA converges slowly. However, the APSA achieves the fastest convergence using past input 
vectors. The ONESM-APSA and NESM-APSA show the same convergence with APSA but with a 
10 dB lower steady-state error by extracting good properties of the SNLMS and the APSA. 
Moreover, the practical NESM-APSA is a good approximation of the ideal but impractical 
ONESM-APSA. 

Conclusions 
An improved affine projection sign algorithm against non-Gaussian impulsive noise is introduced. 
It is based on adding an error scalar matrix to the cost function subject to a constraint on the norm 
of the filter update. The result can be viewed as a generalization of the conventional APSA. Various 
nonlinear error transformation methods can be used in the new scheme with a little modification. 
An ideal nonlinear error scalar matrix is introduced based on the two component Gaussian mixture 
noise model, and we also discuss a practical one to approximate the optimal learning curve. Their 
computational complexities are both given. As shown in simulations, they obtain better 
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performance than the NSA, the APSA, and the SNLMS. This is because proposed algorithms 
extract the good properties of the APSA, which employ past input vectors to improve the 
convergence rate for correlated input signals, and nonlinear error transformation methods, which 
reduce the influence of wrong information. 
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