

The Use of Ontology in Case Based Reasoning for
Reusable Test Case Generation

Rui Li, Shilong Ma
State Key Lab. Of Software Development Environment

School of Computer Science & Engineering, Beihang University
Beijing 100191,China

{lirui, slma}@nlsde.buaa.edu.cn

Abstract—As we know, software testing is an important part of
software development lifecycle. More than 50% of the whole
system development work and total cost were spend on the
software testing. And it’s estimated that almost 60% of the total
test time and cost were spent on the design of test cases. In recent
years, the automated testing gradually replaces the traditional
manual testing to become an important branch of software
testing. In automated testing, the most important thing is to
design and generate valid test case automatically. In this paper,
In order to reduce the workload of testers on the test case
generation, improve the test efficiency and makes test experiences
be passed on, we design a common description method for the test
case based on ontology; propose a semantic similarity measure
method to retrieve the usable test cases from test case library
based on WordNet; establish the relationship between the test
case and test requirement though rules to modify the retrieved
test case; generate the final test case sequence. At last, the
practical applicability of the approach is evaluated through an
experiment.

Keywords-software testing; ontology; test case generation;
semantic similarity measure

I. INTRODUCTION

As we know, software testing is an important part of
software development lifecycle. Research shows that
approximately 50 percent of the elapsed time and the total cost
were spent on the software testing. In some areas which relate
to life and property, such as aerospace, national defense,
transportation, nuclear energy and so on, it will take a longer
time and costs more [1]. In recent years, the automated testing
gradually replaces the traditional manual testing to become an
important branch of software testing. In automated testing, the
most important thing is to design and generate valid test case
automatically. Statistically speaking, it’s estimated that almost
60% of the total test time spent on the design of test cases [2].
So, how to design and generate test cases efficiently becomes a
hot research topic in the area of automated test.

Test case is a set of conditions or variables which used to
determine whether an application, a software system or one of
its features is working as it was originally established for it to
do [3]. In general, the test case design and generate depends on
the tester’s intuition and personal experience, and the format of
test cases varies from different testers, which directly affect the
efficiency of software testing. As we know, software reuse has
been thought as a key strategy for reducing development costs
and improving quality [4]. Some experts have put the concepts

of reuse into the practice of software requirements engineering
and design engineering, and have achieved remarkable results.
Applying this method to software test and making full use of
the past outcomes, accumulated knowledge and experiences to
design new test case not only can make up the deficiency of
testers’ experiences, but also can reduce those redundant works
in designing similar test cases, which improves the test
efficiency and makes test experiences be passed on.

Case-based reasoning is a method for problem-solving. It
imitates human thinking trying to make a decision based on
earlier experiences. In other words, Case-based reasoning is an
approach which can be used to solve new problems by using or
reusing that were used to solve similar problem [5]. That is
precisely suitable for the requirements of the test case reuse. On
the other hand, although there are a large number of test cases
can be reused in the field of software testing, the test process
will different due to the different operating system, operating
environment, hardware, network conditions, user
characteristics, etc. This undoubtedly increases the complexity
of the test case which determines the test cases reuse need to
take various factors into account, and find out the best solution
on the basis of previous experience and test cases. That makes
case-based reasoning useful and highly valued.

In this paper, to simplify the way of generate reusable test
case for various testing, we design a common description
method for the test case based on ontology; propose a a
semantic similarity measure method to retrieve the usable test
cases from test case library based on WordNet; establish the
relationship between the test case and test requirement though
rules to modify the retrieved test case; generate the final test
case sequence. At last, the practical applicability of the
approach is evaluated through an experiment.

The rest of this paper is structured as follows. In Section 2
we outline the related work in this area followed by Section 3
that describes the ontology-based test case library and test task
along with its constituent concepts and relations. Section 4
outlines a semantic similarity measure method to retrieve the
usable test cases from test case library based on WordNet, and
a rule-based method to generate the test case sequence. In
Section 5, we give an experiment to evaluate this approach.
Finally we discuss our conclusions and future work in Section
6.

International Conference on Artificial Intelligence and Industrial Engineering (AIIE 2015)

© 2015. The authors - Published by Atlantis Press 369

II. RELATED WORK

In the 1900s, the ideas that apply the concepts of reuse into
the software test cases began to sprout. To the best of our
knowledge, Mayrhauser is the first researcher who published
relevant paper. In his paper, Mayrhauser [6] proposed a new
test case generate method to improve the reuse of test cases by
domain analysis and domain modeling, and developed a test
case generate tool (DBT) based on domain modeling. After
that, much research has been devoted to the reuse of the test
case. It can be mainly divided into two aspects: the reusable
test cases generation and the reusable test case management.
Govind Kulkarni [7] discussed the reusability of test case for
web application. Renzuo Xu [8] provide a theoretical model
for generating and executing pattern, and make the test cases
independent of the software to be tested and reach the testing
reuse target. Yongbo Wang [9] proposed an approach of test
case generation based on ontology. To describe precisely and
accurately test case, Shaojie Gao [10] pointed out an ontology-
based method which as a basis for the sharing and reuse of
knowledge has been widely used in information science.
Luxiao L [11] developed a test case library and discussed the
model of testing case managing. To support effective test
reuse, Z. L. Shao [12] proposed a software test design model
based on the analysis of reusable test assets and their
relationships. There are many outstanding researches which
focus on how to generate or manage test case, however, few
study is chiefly concerned with how to retrieve reusable test
case from test case library efficiently. In recent years, CBR is
considered as an effective approach to improve this problem.
And the related research is just beginning. As we know, the
case-based reasoning for test case generation involves
following steps: (1) retrieving relevant test cases from the test
case library; (2) selecting a set of the most suitable test cases;
(3) modifying and evaluating the set of test case in testing
process; (4) storing the newly test cases in the test case library
as a valuable and reusable resource for the future applications
or system. In the whole process, it is a key issue that the
suitable test cases description and retrieval. The biggest
drawback of CBR is that the case adaptation is not easy, which
often need an artificial adjustment. But if using ontology to
describe the test case, the test case will have semantic
capability, which makes itself easy to be modified. Therefore,
in the following section, we build ontology-based test case
library, and retrieve the reusable test case from this library by
calculating the semantic similarity between test case and test
requirement.

III. ONTOLOGY-BASED DESCRIPTION

Actually, ontology is a philosophical concept. Over the past
twenty years, the ontology is widely used in artificial
intelligence. As a vividly description said, ontology like a smart
middleware between people and machine. It can not only
makes the communication between people and machine
become more smooth, but also helps the machine to understand
natural language better that machine can make the appropriate
changes based on the changes in natural language. In software
engineering, the specification is described in natural language
at first. The test requirements and the test cases are no

exception. For the machine, there is no link between two
different sentences with similar meaning which described by
natural language. However, ontology can establish a semantic
association between these two different sentences which can be
understood by machine. Therefore, we use ontology to build
the test case library and model the test requirements.

In this paper, all the work is based on the following two
assumptions.

Assumption 1: The same or similar test requirements can
use the same or similar test case.

Assumption 2: The same or similar test requirements will
be repeated.

A. Ontology-Based Test Case Library

Define abbreviations and acronyms the first time they are
used in the text, even after they have been defined in the
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc,
and rms do not have to be defined. Do not use abbreviations in
the title or heads unless they are unavoidable.

As ontology is used to describ different areas, as no
universal definition for ontology exists. We give the definition
of ontology-based test case and test case library as follows:

Definition 1: Test Case Ontology. TCO={TCC, R}. TCC
(Concepts) and R (Relations) are two sets which don’t intersect
with each other.

For convenience, following basic relations of ontology are
used in the rest of this paper:

Theorem 1: P(x) relation. ∃C1 ∈ TCC, if the type of
concept “C1” is P, then it can be described as “P(C1)”. For
example: has(C1): means that C1 is exist.

Theorem 2: R(x, y) relation. ∃C1, C2 ∈ TCC, if the type
of relationship between concept “C1” and “C2” is “R” then the
relation can be described as R(C1, C2). For example:
instance(C1, C2): describes the instance relationship between
two concepts, it means that concept “C1” is the instance of
“C2”.

Definition 2: Test Case Library. TCL= {TCO, Rules}.
Rules represent a set of inference rules that we will explain in
detail below. In this paper, rules are used to modify the test
case.

As we mentioned above, a test case in software testing is a
set of input, execution condition and expected results for a
specific purpose. And in the ontology-based test case library,
the precise definition of the terms can be represented by a
series of description logic formulas. Therefore, In order to
clearly exhibit the process of reusing test cases, a test case is
defined as a 7-tuple: {TID, TP, PR, TE, TI, TO, ER}. The 7-
tuple is shown in Table 1.

370

TABLE I. THE PROPERTIES OF A TEST CASE

Propert
y

Name of Property Description

TID Id Unique identifier of a test case
TP Test Purpose The indivisible purpose of the testing
PR Precondition The condition need to meet before testing
TE Test Environment The environment needed in the testing
TI Test Input The input data
TO Operation The process of testing
ER Expected Result The expected result

Definition 3: Test Case Sequence. The test case
sequence is composed of at least one test case. And there is
a certain sequence existed between the test cases. It can be
defined as follows:

TCS: ≥1has(TCO)∧Pre(tcoi, tcoj)∧instance(tcoi, TCO)
∧instance(tcoj, TCO)

For a better description, number restrictions and an R(x, y)
relation are used in the formal expression of TCS.

 ≥n R : at least number restrictions, the number of
relationship “R” is at least n.

 ≤n R : at most number restrictions, the number of
relationship “R” is at most n.

 Pre(x, y): sequence relationship, it means that x is prior
to y.

B. Ontology-Based Test Task

At the beginning of the software testing, testers must
determine the test target. A test target can be represented as a
set of test requirements. For example, for the functional
coverage testing, each function of the application or system
which waits to be tested corresponds to a test requirement.
Moreover, testers also need to determine the test environment.
Therefore, a test task can be defined as a 2-tuple (TT, TE), and
TT refers to test target, while TE means test environment. If
using TR to represent the test requirement which cannot be
subdivided into some smaller requirements, TT can be defined
as follows:
TT: ≥1has(TR)∧Pre(tri, trj)∧instance(tri, TR)∧instance(trj,

TR)
This definition is similar to the definition of TCS. It also

illustrates that at least one test case sequence is required to
complete a test target.

Here is a simple example to illustrate the relationship
between them which can be seen from Fig.1. Assuming for a
specific test target, there is a test requirement set R = {tr1, tr2,
tr3, tr4}, and there exists an order between them, such as tr1
tr2 tr3 tr4.

FIGURE I. A SIMPLE EXAMPLE TO ILLUSTRATE THE
RELATIONSHIP BETWEEN TEST CASE, TEST CASE SEQUENCE,

TEST TARGET AND TEST REQUIREMENT

If we can find test case set {tc11, tc12… tc1n} for tr1, test case
set {tc21, tc22… tc2n} for tr2, test case set {tc31, tc32… tc3n} for
tr3, and test case set {tc41, tc42… tc4n} for tr4. In the actual
testing, the number of test cases in each test case set for each
test requirement is not equal. If the output of tc11 meets the
precondition of tc22, then we can add them into a same test case
sequence. And the rest can be done in the same manner. Finally,
the test case sequence can be found for the specific test target.

IV. TEST CASE RETRIEVAL AND ADAPTATION

If the test requirement (TR) is regarded as query case, and
the test case library is viewed as case base, the reusable test
case generation might be considered as searching the cases
which has the highest degree of matching with query case from
case base, analyzing and rewriting the cases according to the
actual conditions. In this section, we will discuss the two steps
respectively.

A. WordNet-Based Test Case Retrieval

The test case retrieval process is to find the test case which
TP match the TR from the test case library. Because the
different people have different expression for the same
requirement in software engineering, the string comparison
method which only judge whether all strings are equal is not
applicable at here. In this paper, we introduce an ontology
similarity calculation method to get a test case set in which the
TP of each test case match the TR semantically in varying
degrees. The ontology similarity calculation is based on the
WordNet which is a large lexical database of English. Nouns,
verbs, adjectives and adverbs are grouped into sets of cognitive
synonyms (synsets), each expressing a distinct concept. Synsets
are interlinked by means of conceptual-semantic and lexical
relations [13]. Our approach distinguishes the part of speech
the word belongs to. Different parts of speech have different
weights in the calculation.

As it mentioned above, TP refers to the indivisible purpose
of the testing. Each test case can be modeled as a node in
ontology. TP which should include one verb and several nouns
is a property of the node. Fig.2 shows an example of test
purpose for aviation mission electronic systems.

FIGURE II. AN EXAMPLE OF TEST PURPOSE FOR AVIATION
MISSION ELECTRONIC SYSTEMS

The alert function of aviation mission electronic systems has
several realization steps. Such as set the startup parameter for
radar, start radar, radar scanning, judge the object which is
scanned, and so on. As “set the startup parameter for radar” for
example, it can be expressed as a verb and a set of nouns. TR is

371

similar to TP. It also can be expressed as a verb and a set of
nouns. We calculate the similarity between them according to
the WordNet. The working principle of the ontology similarity
calculation can be seen from the Fig.3.

FIGURE III. THE WORKING PRINCIPLE OF THE ONTOLOGY
SIMILARITY CALCULATION.

There are many methods used to measure ontology semantic
similarity on the basis of WordNet [14][15][16][17]. In general,
these methods can be divided into the following categories: (1)
based on the path length of concept; (2) based on information;
(3) based on features; (4) other comprehensive calculation
method. Since we need to find as many test cases as possible
for consideration in the reusable test case retrieval phase. So,
when calculating the similarity of two concepts, we only
consider two basic factors: the concept path length and the
coincide path length which defined as follows:

Definition 4: Concept Path Length (hw). The path length
from concept to the root.

Definition 5: Coincide Path Length (h). The length of the
overlap path from two concept to the root.

Assume that there are two concepts Wi and Wj. The concept
path length of Wi is hwi, and the concept path length of Wj is hwj.
The length of coincide path between them is h.

If we define the contact ratio (rc):

Then the similarity between Wi and Wj can be calculated as

follows:

(,)
rc rc

i j rc rc

e e
s im w w

e e

And the similarity between TP and TR can be obtained by
the following formula:

(,)
(,) (,) (,)TP TR TP TR

i j
sim TP TR sim verb verb Maxsim noun noun

In the above formula, and are the factor parameters

whose value ranges in (0, 1), and + =1; .

For the two concepts W1 and W2, their location relation in
WordNet may have the following situations which can be seen
in Fig. 4.

FIGURE IV. THE POSITION RELATION OF W1 AND W2 IN
WORDNET.

As can be seen from Fig.4., the location position relation
between two concept W1 and W2 can be classified into two
categories: (1) the coincide path length is 0 (h=0); (2) the
coincide path length is greater than 0 (h>0). According to the
information theory [18], in the first case, there is almost no
similarity between W1 and W2. And in the second case, the
greater the ratio of the coincide path length in the concept path
length, the less the similarity between W1 and W2.

FIGURE V. THE PART OF THE HIERARCHICAL SEMANTIC
STRUCTURE IN WORDNET

As {person, animal, boy, girl} for example to prove the
validity of the formula which we proposed above. Fig.5 shows
the part of the hierarchical semantic structure in WordNet
which contains the four nouns. The similarity calculation
results are shown in Table 2.

TABLE II. THE SIMILARITY CALCULATION RESULTS OF THE FOUR
NOUNS.

(w1, w2) h hw1 hw2 rc Sim(w1,w2)

(person, animal) 4 5 5 4/5 0.6640

(person, boy) 5 5 7 5/6 0.6823

(boy, girl) 5 7 7 5/7 0.6134

(boy, animal) 4 7 5 4/7 0.5164

The results shows that the similarity between person and
boy is greater than person and animal. And the similarity
between boy and animal is the smallest in the results. This is
not only consistent with the facts but also consistent with the
information theory. Therefore, the formula can be used to
retrieve similar test case from the test case library.

372

B. Rule-Based Test Case Adaptation

Generally speaking, due to the test pre-conditions and test
environment have changed, the retrieved test cases are difficult
to use in testing directly.

In different test environment, the execution command of
test case and the environment variables of test case are different.
However, system has stable function implement and business
logic which cannot change with the environment. Therefore,
we need to modify the related information of test cases which
we retrieved from the test case library according to the test
environment which specified in the test task.

Operating system is an important element in the test
environment. As Windows and Linux for example, we give the
rewriting rules of test case as follows.

(1) Rewrite the operating system on which the test case is run
when the operating system information of test case is
different from that of test task.

testTask(?tt)∧hasOS(?x, ?tt)∧testCase(?tc)∧
hasOS(?y, ?tc)∧different(?x, ?y)transOS(?x, ?tc)

(2) Modify the script execution command.
Is-OS(?x, Windows)∧

script(?file)execute(“cmd”+?systemDrive+?file)
Is-OS(?x, Linux)∧script(?file)execute(“./” +?file)

(3) Modify environment variables.
Is-OS(?x, Windows)∧path(?path)execute(“cmd

set”+?path)
Is-OS(?x, Linux)∧path(?path)execute(“export

PATH=$PATH:” +?path)
Other changes which caused by the change of test

environment can be written to the similar rules.

As we know, if the expected result of a test case meets the
precondition of another test case, then the two test cases can be
added into a same test case sequence. However, 100% satisfied
situation do not occur as often. In this paper, we discuss three
situations.

(1) The expected result of a test case has an intersection
with the precondition of another test case. Table 3
shows two test case for example.

TABLE III. THE EXPECTED RESULT OF A TEST CASE HAS AN
INTERSECTION WITH THE PRECONDITION OF ANOTHER TEST CASE.

Test case 1 Test case 2

… …

… PR: Pi∧…∧Pj∧Pj+1∧…∧Pn

… …

ER: P1∧…∧Pi-1∧Pi∧…∧Pj …

In table 3, the expected result of test case 1 is P1∧…∧Pi-1

∧Pi∧…∧Pj, while the precondition of test case 2 is Pi∧…
∧Pj∧Pj+1∧…∧Pn. They are not equal, but there exists
intersection Pi∧…∧Pj. In this situation, we modify the TI of
test case 2 by adding the inputs which satisfy the disjoint parts.
The rewriting rules described below.

testCase(?x)∧testCase(?y)∧different(?x, ?y) ∧
hasER(?er, ?x)∧hasPR(?pr, ?y) ∧hasTI(?ti, ?y)∧((has

(?P, ?er) ∧ has (?P, ?pr))∨(has (?P, ?er) ∧has
(?P, ?pr)))instance(?ins, ?P)∧add (?ins, ?ti)

(2) The expected result of a test case contains the
precondition of another test case which can be seen in
Fig.6(a).

FIGURE VI. THE CONTAIN RELATIONSHIP BETWEEN THE
EXPECTED RESULT OF A TEST CASE AND THE PRECONDITION

OF ANOTHER TEST CASE

Because ER = PR (ER-PR), we can write a new test case
for the part (ER-PR) according to the following rule. The new
test case is derived from test case 2. So, they have the same TO,
but different PR, TI and ER.

testCase(?x)∧testCase(?y)∧different(?x, ?y) ∧
hasER(?er, ?x)∧hasPR(?pr, ?y) ∧hasTI(?ti, ?y) ∧
hasTO(?to, ?y) ∧hasER(?r, ?y)∧contain (?er, ?pr)

newTestCase(?z)∧addPR(?er-?pr, ?z) ∧instance(?ins, ?er-
?pr)∧hasTI(?in, ?z)∧add (?ins, ?in) ∧addTO(?to, ?z) ∧

addER(?r, ?z)
(3) The expected result of a test case is contained in the

precondition of another test case. As shown in Fig.6(b).

In this situation, the expected result of a test case must meet
the precondition of another test case. So, there is no need to
modify the test case 2.

Actually, at most of the time, the relationship between the
expected result of a test case and the precondition of another
test case is the combination of the three situations we
mentioned above.

V. EXPERIMENT

Our initial implement uses a test case library consists of 200
test case and 23 rules. We use OWL to describe the test case
and use SWRL to describe the rewriting rules. And we test our
experiment on a machine has a 2.4GHz CPU and 1G RAM.

In our experiment, we decompose a test task into 6 test
requirements. Table.4 shows the results.

 The serial number of test requirement TR(column
labeled No.)

 Number of the retrieved test cases(column labeled Test
Cases)

 Number of the retrieved test cases of which Sim(TP,
TR) is greater than 0.5(column labeled Sim(TP,
TR) 0.5)

373

 The proportion of valid test cases(column Percentage)
 The total time spend on test case retrieve in seconds

(column labeled Time)

TABLE IV. RESULTS OF THE EXPERIMENT.

No
.

Test Cases Sim(TP, TR) 0.5 Percentag
e

Time

1 16 10 0.625 4.01

2 14 8 0.571 3.87

3 10 7 0.7 3.73

4 10 6 0.6 3.73

5 15 9 0.6 3.88

6 23 11 0.478 4.13

 The number of generated test case sequence: 4

The results of experiment illustrate that (1) greatly reduce
the time which used to generate test cases; (2) the ontology-
based similarity calculation approach for test case Can
guarantee a certain recall ratio; (3) effectively establish the
relationship between different test cases through semantic and
generate the test case sequence; (4) although the result of this
experiment is not significant, it will improved with the new test
case added into the test case library. It can be said that the
reusable test case generation method we proposed in this paper
is feasible in practical applications.

VI. CONCLUSION

This paper discusses how to generate the reusable test case
from test case library based on ontology. Here the knowledge
base is test case library which represent what we can learn from
a test case, and define the rules that used to adaptation the
retrieved test case. We have argued that, although each test
case is complexity and seems independent with the other test
case, the semantic similarity between them still can be
measured. The results of experiment shows that the approach
we proposed in this paper can greatly shortens the time spent
on the reusable test case generation, reduces the workload of
tester, improve the efficiency of the test, and makes test
experiences be passed on.

In this paper, we have also proposed an approach for
calculating the ontology semantic similarity between test case
and test requirement based on the WordNet. However, this
approach is too coarse at this stage and we will take more effort
to elaborate it in the future.

The experiment we introduce in section 5 is quite simple; it
did not consider the coverage of the generated test case
sequence, and the test case sequence generation process still
requires manual intervention, it unable to achieve fully
automatic. In the following work we will evaluate and improve
our approach by more valuable case. And to make our work
more persuasive, the credibility measure model is necessary.
These are within our future work.

ACKNOWLEDGMENT

We would like to thank students of the same laboratory for
their comments on the paper and also for proofreading the text.

This work is partially supported by National Science and
Technology Support Program (2011BAH14B04).

REFERENCES
[1] DAVID S., The economics of software quality assurance[J]. National

Computer Conference, 1976

[2] Glenford J Myers, Tom Badgett. The art of software testing[M]. 2nd ed.

[3] http://en.wikipedia.org/wiki/Test_case

[4] Frakes W. Systematic Software Reuse: A Paradigm Shift. In Proceedings
of Third international Conference on Software Reuse: Advances in
Software Reuse. Los Alamitos, California: IEEE Computer Society
Press, 1994

[5] Avramenko, Yuri, Kraslawski, Andrzej. Case Based Design:
Applications in Process Engineering. Studies in Computational
Intelligence, Vol.87. 2008.Springer

[6] Mayrhauser A v, Mraz R T, Walls J, et al. Domain Based Testing:
Increasing Test Case Reuse. Proceedings of ICCS'94: Proceedings of the
1994 IEEE International Conference on Computer Design: VLSI in
Computer & Processors, Washington, DC, USA: IEEE Computer
Society, 1994. 484-491

[7] Kulkarni. Reusable Test Cases How Can It Facilitate Web Testing.
Proceedings of 3rd Annual International Software Testing 2001
Conference in India,2001

[8] XU Renzuo, CHEN Bin, CHEN Bo, WU Minquan, XIONG Zhongwei.
Investigation on the pattern for Construction of Reusable Test Cases in
Object-Oriented Software. Journal of wuhan university. 2003, 49(005):
592-596

[9] Yongbo Wang, Ontology-Based Test Case Generation for Testing Web
Service. Autonomous Decentralized Systems, 2007. ISADS '07. Eighth
International Symposium.

[10] Shaojie Guo, Weiqin Tong, Juan Zhang, Zongheng Liu. An Application
of Ontology to Test Case Reuse.2011 International Conference on
Mechatronic Science, Electric Engineering and Computer. August 19-22,
2011, Jilin, China

[11] LU Xiao-Li, GE Wei, CHEN Xin-Li, HAO Ke-Gang. Designing a test
case library system of supporting sharing and reusing. Journal of
computer science. 33(5): 290-291, 2006

[12] Z.L.Shao, X.Y.Bai, and C.C.Zhao. Research and implementation of a
reuse-oriented test design model. Journal of mini-micro systems.
27(11):2150-2155, 2006

[13] WordNet. Princeton University. 2010. http://wordnet.princeton.edu/

[14] A. Budanitsky and G. Hirst, Semantic Distance in WordNet: An
Experimental, Application-Oriented Evaluation of Five Measures. Proc.
Workshop WordNet and Other Lexical Resources, Second Meeting of
the North Am. Chapter of the Assoc. for Computational Linguistics,
2001.

[15] A. Budanitsky , G. Hirst. Evaluating WordNet-based Measures of
Lexical Semantic Relatedness. Volume 32. Computational Linguistics,
2006.

[16] Nuno Seco, Tony Veale, Jer Hayes. An intrinsic information content
metric for semantic similarity in WordNet. In Proceedings of
ECAI’2004, the 16th European Conference on Artificial Intelligence.,
Valencia, Spain, 2004.

[17] M. McHale, A Comparison of WordNet and Roget’s Taxonomy for
Measuring Semantic Similarity. Proc. COLING/ACL Workshop Usage
of WordNet in Natural Language Proceeding Systems, 1998.

[18] WIEMER-HASTINGS, P. Adding syntactic information to Isa. In
Proceedings of the 22nd Annual Conference Cognitive Science Society.
989-993. 2000.

374

