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Abstract—Finite element analyzes is studied based on a 
three-dimensional model of microbolometer to extracting 
effective thermal conductivity, thermal capacity and initial 
resistance of the model. An equivalent electrocircuit of 
microbolometer is established, which present a macro-model of a 
microbolometer model by definition of key parameter mentioned 
above in Verilog-A hardware language under the simulation 
environment of integrated circuit. By using this method, the 
macro model of a microbolometer which can be used in circuit 
simulator to achieve coordinated simulation between designing of 
microbolometer and readout integrated circuit. 
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I. INTRODUCTION 

Microbolometers are the typical monolithic integrated 
micro electro mechanical system (MEMS) and are popular in 
many commercial applications because of room temperature 
operation capability, compactness, ruggedness and less weight 
as compared to the high performance cooled semiconductor 
photon detectors [1-4]. The operating principle of 
microbolometers is detection temperature changing by device 
heat sensitive layer which caused by the changing of the 
thermal radiation [5-6]. 

As a monolithic integrated device, it is manufactured by 
COMS-MEMS, and simulation of this monolithic integrated 
device was studied in two methods. Structure design of 
microbolometer was accomplished by MEMS software and 
read out integrated circuit was designed by Cadence .etc. With 
the development of MEMS CAD technology, the design 
pattern of microbolometer was shifted from device lever 
design, towards system level design [7-8]. 

In this paper, we present a method to achieve system level 
simulation based on FEA simulation; extracting of 
macro-model of a microbolometer. Achievement of system 
level simulation can reduce the complex rate of design flow, 
shorten the development cycle, lessen development cost, and 
enhance the efficiency and quality of the design. 

II. THE MICROBOLOMETER MODEL DEVELOPMENT 

A. The Key Parameters of Model 

The G presents how well the heat exchange between the 
bolometer element and the substrate through the support legs. 
Geff is effective thermal conductance under loading bias 
current, which is proportional to loading bias current, and 

effective thermal conductance Geff can be written as eqn (1). 

eff

C
G


                   (1) 

Where τ is the thermal time constant, C is the total heat 
capacity, which signifies the amount of the material that needs 
to be heated up by the power supplied to the element either 
via biasing or radiations. It is expressed as eqn (2) [9-11]. 

    iii cVC             (2) 

Where Vi is the volume of each of the bolometer 
membrane, ρi is the density of each materials and ci is the mass 
specific heat of each materials. 

NETD is defined as the minimum change in temperature 
in the target scene and it can be given by eqn (3) 
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Where Vn is total noise; τ0 is the transmission of the optics 
in front of the pixel; Ad is the area of detector pixel; Cint is 
integrating capacitor; Tint is integral time; C is thermal 
capacity; Geff is thermal conductance; η is the infrared 
absorption rate; Vfid is the bias voltage; R0 is the device 
resistance; ω is the modulation rate. 

R0, Geff and C are three key parameters of microbolometer 
which have significant impact on the performance of device. 

B. The Model Development and Analysis 
A complete three-dimensional model of a microbolometer 

is built in MEMS simulation software Intellisuit which shown 
in fig. 1(a). Firstly, electronic performance is simulated. 
Current density 1.575×10-8A/um2 is loaded on one of 
electrodes, and a 0V voltage was load on the other electrode, 
and then electrical potential difference is obtained shown in 
fig. 1(b). Through volt-ampere laws, resistance value R0 can 
be calculated. The secondly step, initial temperature was 
defined as 27℃. To ensure device temperature stabilized, a 
30ms thermal radiation impulse is delay for 40ms compared to 
the bias current which shown in fig. 1(c) on thermal sensitive 
layer vanadium oxide. Then heat response time τ can be 
obtained from fig. 1(d). Through calculation, the thermal 
capacity C also can be obtained. The effective thermal 
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of the element due to easier heat transfer towards the substrate. 
We set 1.25V biasing voltage, and the Geff value is 
2.39×10-7J/K  in Cadence and the output signal is displayed 
in fig. 5. 

 

FIGURE V. THE EFFECT OF THERMAL CONDUCTANCE ON SIMULATED 

PERFORMANCE OF A MICROBOLOMETER 

The TCR signifies the relationship between resistance and 
temperature. In our model, the TCR value of thermal sensitive 
material vanadium oxide is -0.02. We set voltage range from 
340mV~1.25V , and the optical input was given in pulse form 
with 70ms period and 50﹪  duty cycle. The signal is 
displayed in fig. 6(a). In the same situation of optical input, 
the biasing voltage is set 1.25V, and the signal in Cadence is 
displayed in fig. 6(b). 

 
 (a) 

 
(b) 

FIGURE VI. THE EFFECT OF TCR ON: (a) DC I-V CHARACTERISTICS, (b) THE 

RESPONSE OF THE MICROBOLOMETER TO CHOPPED IR RADIATIONS 

VI. CONCLUSIONS 

Finite element analysis was studied based on a 
three-dimensional model of microbolometer to extracting 
effective thermal conductivity, thermal capacity and initial 
resistance of the model. The equivalent circuit of a 
microbolometer which obtains the parameters mentioned 
above are defined and packed in circuit. Finally, coordinated 
simulation between designing of a microbolometer and 
readout integrated circuit is accomplished which provide a 
possibility to a system level simulation of a microbolometer 
and readout integrated circuit. 
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