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Abstract—A block oriented nonlinear system consists of a series 
of blocks. These blocks represent both memoryless nonlinearity 
and linear dynamics that comprise the overall input-output 
dynamics of system. Under this category, Hammerstein model is 
one of the block oriented model. The parameter identification 
method of Hammerstein model is proposed in this paper. The 
basic idea is that the nonlinear transfer function of the 
Hammerstein model can be changed to an intermediate model 
initially. Then, the parameters of the intermediate model are 
obtained via an improved particle swarm optimization algorithm. 
Next, through the relations of the parameters of the intermediate 
model and those of the Hammerstein model, the estimates of the 
parameters of the Hammerstein model are obtained. Finally, in 
simulation experiments, compared with other methods, the 
feasibility of the presented method is demonstrated.  
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I. INTRODUCTION 

Recently, a considerable amount of research has been 
carried out on modelling, identification, and control of the 
nonlinear systems. Most dynamical systems can be better 
expressed by the nonlinear models, which can describe the 
global behavior of the nonlinear system over the whole 
operating range, rather than by linear ones that are only able to 
approximate the nonlinear system around a given operating 
point. One of the most frequently studied classes of the 
nonlinear models are the so-called block oriented nonlinear 
models [1, 2]. Under this category, the nonlinear systems are 
represented as Wiener, Hammerstein, Wiener-Hammerstein, 
and Hammerstein-Wiener type of models, etc. These block 
oriented nonlinear model structures have been successfully 
used to represent nonlinear systems in a number of practical 
applications in the areas of chemical processes [3], control [4], 
compression techniques [5], nonlinear 
aeroelastic/aeroservoelastic modelling [6], etc. 

The objective of this article is to investigate the parameter 
estimation problem of Hammerstein model. Firstly, the 
nonlinear transfer function of the Hammerstein model can be 
converted to an intermediate linear model based on the 
function expansion. Then, the parameters of the intermediate 
model are obtained by an improved particle swarm 

optimization algorithm. Next, through the relations of the 
parameters of the intermediate model and those of the 
Hammerstein model, the parameters of the Hammerstein 
model are identified simultaneously. Finally, the results of 
simulation experiments are used to demonstrate the 
effectiveness of the presented identification approach. 

II. PARTICLE SWARM OPTIMIZATION ALGORITHM 

Particle swarm optimization is a population-based 
stochastic optimization algorithm, firstly introduced by 
Kennedy and Eberhart in 1995 [7]. Although particle swarm 
optimization algorithm is often ranged in evolutionary 
computation, it is actually an incarnation of swarm intelligence. 
It was developed through simulation of a simplified social 
system, and has been found to be robust in solving continuous 
nonlinear optimization problems. The main advantages of the 
particle swarm optimization algorithm are summarized as: 
simple concept, easy implementation, robustness to control 
parameters, and computational efficiency when compared with 
mathematical algorithm and other heuristic optimization 
techniques. Thereby, recently, particle swarm optimization 
algorithm has been successfully applied to various fields [8-
10]. 

A. Basic Particle Swarm Optimization Algorithm 

Suppose that the search space is D-dimensional, then the i-
th particle of the swarm can be represented by a D-
dimensional vector, Xi = (xi1, xi2, … , xiD)T. The velocity of this 
particle, can be represented by another D-dimensional vector 
Vi = (vi1, vi2, …, viD)T. The best previously visited position of 
the i-th particle is denoted as Pi = (pi1, pi2, …, piD)T. Defining g 
as the index of the best particle in the swarm, and let the 
superscripts denote the iteration number, then the swarm is 
manipulated according to the following two equations. 
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where d = 1, 2, …, D; i = 1, 2, … , N, and N is the size of the 
swarm; c is a positive constant, called acceleration constant; r1, 
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r2 are random numbers, uniformly distributed in [0, 1]; and n = 
1, 2, …, determines the iteration number. 

B. Improved Particle Swarm Optimization Algorithm 

In basic particle swarm optimization algorithm, the lack of 
a control mechanism for the velocity resulted in low efficiency 
for particle swarm optimization, compared to Evolutionary 
Computation techniques. Specifically, particle swarm 
optimization located the area of the optimum faster than 
Evolutionary Computation techniques, but once in the region 
of the optimum, it could not adjust its velocity step size to 
continue the search at a finer grain. The problem was 
addressed by incorporating a weight parameter for the 
previous velocity of the particle. Thus, in the latest versions of 
the particle swarm optimization, Eq. (1) is changed to the 
following ones [11]. 
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where w is called inertia weight; c1, c2 are two positive 
constants, called cognitive and social parameter respectively; 
and χ is a constriction factor, which is used, alternatively to w 
to limit velocity. The role of the inertia weight w, in Equation 
(3), is considered critical for the convergence behavior of the 
particle swarm optimization algorithm. w is employed to 
control the impact of the previous history of velocities on the 
current one. Accordingly, the parameter w regulates the trade-
off between the global and local exploration abilities of the 
swarm. A large w facilitates global exploration; while a small 
one tends to facilitate local exploration. A suitable value for w 
usually provides balance between global and local exploration 
abilities and consequently results in a reduction of the number 
of iterations required to locate the optimum solution. Initially, 
w was constant. However, experimental results indicated that 
it is better to initially set the inertia to a large value, to 
promote global exploration of the search space, and gradually 
decrease it to get more refined solutions. Thus, in this paper, w 
is set according to the following equation. 
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where itermax is the maximum number of iterations, and iter is 
the current number of iterations, wmax and wmin are the initial 
and final inertia weight. The search procedures of the 
improved algorithm are as shown below. 

Step 1. Let initialization iterative number be iter = 1, 
population size be N, the termination iterative number be 
itermax, the value of the initial inertia weight factor be wmax, the 
value of the final weight factor be wmin, and etc. 

Step 2. Initialize a population of particles with random 
positions and velocities in the D-dimension space by uniform 
probability distribution function. 

Step 3. Evaluate particle’s fitness value. 

Step 4. Compare each particle’s fitness value with the 
particle’s pi. If the current fitness value is better than pi, then 

set the pi value equals to the current fitness value and the pi 
location equals to the current location in space. 

Step 5. Compare the fitness value with the population’s 
overall previous best. If the current fitness value is better than 
pg, reset pg to the current particle’s array index and value. 

Step 6. Change the velocity, vi, and position of the particle, 
xi, according to Eqs. (3) and (2), respectively. 

Step 7. Change the inertia weight factor, w, according to 
Eq. (4). 

Step 8. Return to Step 3 until a stop criterion (e.g., a 
sufficiently good fitness value, a maximal number of iterations) 
is met. 

III. IDENTIFICATION PROCESS 

Consider a single-input single-output Hammerstein model 
shown in Figure 1. Let u(t), y(t) and v(t) be a measurement 
input, the system output and an noise, respectively, x(t) be an 
intermediate input signal. 
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FIGURE I.  HAMMERSTEIN MODEL 

The nonlinear static gain can be approximately expressed 
by Eq. (5). 
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The following form of the transfer function can express the 
linear dynamic system. 
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where m, n are the polynomial’s order, and m ≤ n generally. 

The linear transfer function of Eq. (6) can be described by 
the following difference equation. 
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where e(t) = A(z-1)v(t) can be interpreted as a random fitting 
error. 

It follows from Eqs. (5) and (7) that 
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where αij = ribj, I =1, 2, …, p, j= 1, 2, …, m. 

From Eq. (8), we have the following formula. 
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And Eq. (9) can be expressed by following vectors form. 
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Obviously, y(t) is a function of the power of u(t), and is 
called an intermediate model throughout this paper. It is 
assumed that the assessment value of the parameter vector θ in 
the intermediate model is 
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Thus the deviation of the assessment can be judged by Eq. 
(11). 
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where h is the window width of identification, ŷ(k) are the 
input values of the obtained assessment model. 

We can solve the minimum of Eq. (11) and obtain the 
corresponding parameter vector θ of the intermediate model 
based on the proposed particle swarm optimization algorithm. 

The parameters of the Hammerstein model are obtained by 
the intermediate parameters as follows. Without loss of 
generality, suppose that the final gain of the linear dynamic 
subsystem of the Hammerstein model is 1, namely,  
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Thereby, Eq. (12) can be expressed by Eq. (13). 
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Right-multiplying C in each side of Eq. (14) gives 

 CRBHC T 

Consequently, it follows from Eq. (15), BTC=CTB and Eq. 
(13) that 
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Transposing each side of Eq. (14) yields 

 TT BRH  

Right-multiplying C in each side of Eq. (17) gives 

 CBRCH TT  

Thereby, by Eq. (18), RTC=CTR and Eq. (16), we have 
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To sum up, firstly, we solve Eq. (11) to get the parameter 
vector θ of the intermediate model using the improved 
algorithm, by which the estimates of A and H can be realized 
by Eqs. (14) and (13). Then, the estimates of R and B are 
fulfilled from Eqs. (16) and (19). Consequently, estimates of 
the parameters of Hammerstein model are obtained. 

IV. SIMULATION EXPERIMENTS 

Consider the following Hammerstein model. 
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and v(t) is Gaussian noise with zero mean and standard 
deviation, σ = 0.04, u(t) is Gaussian noise with zero mean and 
standard deviation, σ = 1.  

In the identification process for θ, the parameter values of 
the identification algorithm are set as follows. Let window 
width of estimation: h=50, N=20,  wmax is 0.9, wmin is 0.4, 
itermax  is 1000, c1 and c2 are 1.48 and 2, respectively, Vmax 
is 2, and system model parameters’ initial values are all picked 
out randomly from [-0.4, 1.5].  

The parameter vector θ of the intermediate model can be 
obtained by using the improved particle swarm optimization 
algorithm as follows. 

)9920.0,2677.0,2610.1,4495.0,3286.0,0887.0

,4176.0,1489.0,3984.0,2997.0,2008.0(




 

Then, the following parameter matrices H, A are formed 
via Eqs. (13) and (14). 













9920.02677.02610.14495.0

3286.00887.04176.01489.0
H

,  
T)3984.02997.02008.01( A . 

Next, the parameter vector R can be obtained based on Eq. 
(16).  

T)9015.02987.0(R . 
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Finally, according to Eq. (19) the parameter vector B is 
T)1004.12969.03988.14986.0( B . 

From the above simulation results, it can be seen that the 
estimates of the parameters by the improved particle swarm 
optimization algorithm are almost closer to the true values. 
Moreover, the step response curves of the real model and the 
identified model are both shown in Figure 2, respectively. And 
the corresponding error curve is shown in Figure 3. From the 
figures, it can be seen that the two curves are almost 
overlapped, which illustrates that the identification results by 
the proposed algorithm is good. 
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FIGURE II.  THE STEP RESPONSE 
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FIGURE III.  ERROR CURVE 

It can be seen that Eq. (10) is similar to a typical form of a 
linear model through the function expansion. So the following 
results of the identification are obtained by the extended least 
squares recursive method. 

)9988.0,2761.0,2541.1,4642.0,3137.0,0867.0

,3939.0,1458.0,3845.0,2868.0,1734.0(
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9988.02761.02541.14642.0

3137.00867.03939.01458.0
H

, 
T)3845.02868.01734.01( A , 

T)8909.02798.0(R ,   
T)1211.13099.04077.15210.0( B . 

Compared the above identification results, it can be seen 
that the identification accuracy of the presented method 
obviously improved. In the simulation, the presented method 
is easily implemented. 

V. CONCLUSIONS 

This paper presented an identification method for the 
single-input single-output Hammerstein. Moreover, compared 

with other method, the results show that the presented method 
has the better precision and robustness, and it meets the 
practical engineering problems. At the same time, the 
application of the particle swarm optimization algorithm is 
further developed. 
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