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Abstract—A symbolic method is presented for calculation of the 
weakly nonlinear distortion effect of operational amplifiers. To 
avoid complicated symbolic generation by considering all 
transistor nonlinearities, a simplified analysis method is adopted. 
This method identifies the nonlinearity of each amplifier stage by 
a low-order polynomial. The proposed symbolic method can derive 
analytical distortion results automatically without the need of 
going through lengthy signal-flow graph analysis. This method is 
applied to sweep analysis of the opamp distortion with respect to 
the external feedback elements, by which optimal selection of the 
parameter value can be determined at any given frequency. 
Remarkable speedup over repeated Spectre simulation has been 
observed. 
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I. INTRODUCTION 
Advanced analog integrated circuits (IC) require high 

linearity for precision signal processing. However, along with 
severe nonlinearity, process variation is worsening as 
semiconductor manufacturing technology advances. In some 
cases the designers also need to optimize the distortion effect 
over a selected working frequency band. Both problems require 
proper characterization of distortion with respect to variational 
circuit parameters. A symbolic method can help in this regard.  

In this work we present a symbolic distortion analysis 
method that can quickly generate analytical distortion results for 
an operational amplifier (opamp). There is already one symbolic 
distortion analysis method proposed in the literature by 
Wambacq et al. [1] a decade ago. However, since this method 
deals with all transistor nonlinearity analytically, the symbolic 
generation cost is extremely high and the design insights would 
be buried in overwhelming symbolic results if not simplified 
properly. Recently, a new technique has been adopted by several 
publications, which uses a numerical identification method for 
distortion characterization [2, 3, 4]. By this method each stage of 
an amplifier is modeled by a third-order polynomial two-port; 
the polynomial coefficients are identified by applying low-
frequency periodic excitation to each stage.  

We review briefly the Volterra series theory for symbolic 
analysis in section 2, then simply describe the nonlinearity 
identification method in section 3. The symbolic distortion 
analysis method is introduced in section 4. An application 
example is reported in section 5. Section 6 concludes the paper. 

II. REVIEW OF THE VOLTERRA SERIES METHOD 
Typically, opamps are designed in stages, such as one, two, 

three, or more stages. Each stage can be treated as two-port with 
one input port and one output port. The nonlinearity of each 
stage could contribute distortion to the whole circuit. In the 
works [2, 3, 4] a method based on identifying stage-wise 
nonlinearity seems to work quite well. A basic message is that it 
might be unnecessary to consider the detailed nonlinearities with 
each transistor for the circuit-level distortion characterization. 
As in [2, 3, 4], we assume that the nonlinearity of each stage 
takes a bivariate third-order polynomial function in its most 
general form. 

 
FIGURE I.  BIVARIATE NONLINEAR MODEL OF ONE STAGE 

Shown in fig.1 is a nonlinear two-port circuit. The nonlinear 
element  is assumed a polynomial function of  
(the input voltage) and (the output voltage). Many opamps 
have compensation elements connected between stages to 
improve stability; some of them are capacitive and can 
significantly affect distortion at specific frequency ranges. This 
is the main reason why many of the recent works have paid 
particular attention to high-frequency distortion analysis [2, 3, 
4]. However, these works without exception used the traditional 
signal-flow method for deriving distortion formulas. Since 
high-order terms are involved in the derivation, although 
explicit formulas can be derived, their real usefulness is 
questionable because in general very little design insights can 
be appreciated. A more serious drawback is that whenever the 
circuit topology is changed even slightly, the derivation has to 
be conducted again. 

This work is motivated by the limitation of the signal-flow 
method already used in the literature, and proposes to take the 
approach of symbolic analysis and incorporate the state-space 
analysis method. Due to the fact that each opamp stage is 
modelled by a low-order polynomial, symbolic analysis based 
on the Volterra series theory has very low complexity and can 
be automated. 
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Note that in Volterra series analysis the first-order system is 
driven by the input source  while the rest two systems  
(up to the third-order)are respectively driven by virtual currents 
generated by the second- and third-order nonlinear terms of

[1,4]. 

Apparently, the nodal voltages solved by a lower order 
system are used by the next order system. In practice, the 
sequence of equations is solved iteratively and a symbolic solver 
can speed up the process.  

A bivariate nonlinearity is described by the following third 
order polynomial 

     (1) 

The coefficients can be determined by harmonic probing of 
a circuit stage, which is to be discussed in Section 3. Denote by 

 for the k-th order Volterra transfer function at the i-th 
node. It can be shown that the second- and third-order virtual 
currents are given by 

                      (2) 

 (3) 

where the subscripts( ) indicate at which frequency point the 
transfer functions are evaluated. The second- and third-order 
harmonic distortion factors of the nonlinear two-port are 
defined by [6]. 

     (4) 

III. NONLINEARITY IDENTIFICATION 
The works [2, 3, 4] adopted the nonlinearity identification 

method, but none of them described the details. For 
completeness, we outline the detailed steps for harmonic probing. 
This method is numerically robust and fits nonlinear circuits the 
best. Other methods like using high order finite difference are 
not numerically stable. A nonlinear circuit inherently modulates 
a harmonic signal excitation. We may measure the harmonics by 
direct measurement or simulation [7]. To avoid exciting 
capacitive parasitics and high-order nonlinearity, we should 
apply a low-frequency and low-magnitude signal for probing. 
The coefficients are determined by matching theoretically 
derived coefficients to the numerically calculated harmonic 
components. 

For example, consider the bivariate nonlinearity 

(1).Assuming ,  and , we get by 
trigonometric identities, 

                      (5) 

Since the input magnitude is known, the numerically 
simulated/measured harmonic magnitudes can be used to 
calculate (at dc),  (at 2ω), and the component  (at ω 
or 3ω). The other three coefficients , and  can be 
determined analogously by flipping the roles of  and . The 
coefficients of the cross-terms, i.e., , and , also 
can be determined by applying the probing voltages at both 
ports and measuring the current of the nonlinear element. That 
is, assuming  and  with , 
we get 

    (6) 

where and , and 

 

By reading the harmonic component magnitudes (obtained 
by Fourier transform), we can calculate the cross-term 
coefficients. 

IV. SYMBOLIC ANALYSIS METHOD 
Recall that different orders of distortion responses can be 

solved from the same linearized circuit driven by sources applied 
at appropriate places. A symbolic method is capable of solving 
a linear circuit with specific input and output (I/O). Moreover, a 
recently developed symbolic method has the feature of solving a 
linear circuit with multiport I/O by using a shared binary 
decision diagram (BDD) [8]. Another particular reason that we 
choose this method is that circuit parameters are uniquely coded 
as the symbols in the symbolic result, which is very suitable for 
sweeping and sensitivity analysis.  

Shown in fig. 2 is a symbolic BDD representing the 
following two transfer functions 

                    (7) 
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FIGURE II.  ILLUSTRATION OF A TWO-ROOT SYMBOLIC BDD 

The two roots at the top provide the access points to the two 
functions. Noting that the three MNA matrices corresponding to 
different order circuit in [1] differ only by a frequency 
multiplicity, a shared BDD with multiple roots (mapped from 
the I/O relations) is an efficient data structure for saving the 
symbolic distortion coefficients. 

V. APPLICATION EXAMPLE 
Symbolically generated distortion results are saved in a BDD 

data structure. In most applications such symbolic results are 
used as a computation engine for post-processing, including 
generating numerical results. Because there is no need of 
repeated construction, numerical evaluation in most cases is 
much faster than repeatedly running circuit simulations. We 
implemented a C++ program for symbolic distortion analysis. 
This program can be used to perform distortion analysis of most 
opamps designed in stages. We use an opamp as an example to 
assess the accuracy of symbolic analysis and show the potential 
in optimizing distortion performance. 

 
FIGURE III.  CONNECTION OF OPAMP IN FEEDBACK 

We assume the amplifier is connected as shown in fig. 3 
which has an analog dc gain defined by . The resistors 

 and  are turnable for shaping the distortion at different 
frequency ranges [2, 3, 4]. The capacitor  represents the 
parasitics at the opamp input. In the experiment all transistor 
level circuits were simulated by the Cadence Spectre simulator 
using the TSMC 0.18um technology library. 

 
FIGURE IV.  TWO-STAGE MILLER-COMPENSATED OPAMP (PMOS-INPUT) 

In the example we consider the two-stage Miller 
compensated opamp (with PMOS input pair) shown in fig.4. 
This amplifier has been sized to achieve dc gain = 73.9dB, 

= 35.9KHz, and GBW = 178MHz. Shown in fig. 5 is the 
corresponding nonlinear small-signal model, where R1 = R2 = 
10kΩ, Cp1= 62fF, and Cp2= 86fF. 

 
FIGURE V.  NONLINEAR SMALL-SIGNAL MODEL FOR THE TWO-STAGE 

AMPLIFIER 

TABLE I. IDENTIFIED NONLINEAR COEFFICIENTS FOR THE TWO-STAGE 
AMPLIFIER 

1st order (A/V) 2nd order (A/V2) 3rd order (A/V3) 
gI

m1 0.389m gI
m2 0.7m gI

m3 -3.83m 
gI

o1 6.61u gI
o2 0 gI

o3 0 
gII

m1 2.79m gII
m2 9.8m gII

m3 65.2m 
gII

o1 39.0u gII
o2 -1.01u gII

o3 6.18u 
  gII

m1o1 14.0m gII
m2o1 6.64m 

    gII
m1o2 5.21u 

The two nonlinear current elements  and 
 model the nonlinearities of the two stages, 

respectively. Both nonlinear functions are assumed bivariate. 
The numerically identified nonlinearity coefficients are listed in 
Table 1. 

 
 

FIGURE VI.  HD2 AND HD3 OF THE AMPLIFIER 
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FIGURE VII.  SWEEPING RESULTS OF HD2 AND HD3 AT F=1KHZ AGAINST R2 

(= R1) 

.  
FIGURE VIII.  SWEEPING RESULTS OF HD2 AND HD3 NEAR THE PEAK (F = 

100MHZ) AGAINST R2 (= R1) 

In experiment a 100mVp−p input signal is applied to the 
closed-loop circuit. The HD2 and HD3 curves calculated by the 
symbolic method are drawn in fig. 6 where a comparison to the 
Cadence simulation result is made. Two sweep results are 
plotted in fig. 7 and fig. 8, where the former is fixed at the 

frequency point = 1kHz (near dc) and the latter is at GBW. 
The sweep time was 5.4 seconds by symbolic program and 269.2 
seconds by Cadence. We observe from fig. 7 that there exists a 
value of R2 that makes the dc value of HD2 zero. This 
phenomenon was discussed in [4] as well. Although the sweep 
result plotted in fig. 8 has appreciable discrepancy due to 
inaccuracy of the symbolic method at high frequency, the 
variation trend is still captured. 

VI. CONCLUSION 
A symbolic distortion analysis method has been presented. 

The method is based on the Volterra series theory and a stage-
based nonlinearity modeling strategy. The compact modeling 
approach greatly simplifies the cost of symbolic analysis. 
Application to the distortion analysis of an opamp circuit has 
demonstrated the satisfactory accuracy in the frequency range up 
to the gain-bandwidth frequency. Significant speedup over 
Cadence Spectre simulation has been observed. 
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