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Abstract—In this paper, a novel approach to find the global 
optimal solution of the special non-convex problems is proposed. 
The non-convex objective function is first decomposed into two 
convex sub-functions. Then a generalized gradient is introduced 
to determine a search direction and the evolution equation is built 
to obtain a global minimum point. By the approach, we can 
prevent the search process from some local minima and search a 
global minimum point. Two numerical examples are given to 
prove the approach to be effective. 
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I. INTRODUCTION 

This paper is mainly concerned with the following 
optimization problem:  

                          )(XJMin                        (1.1) 

S. t. 

       
n

nxxxX  )',...,,( 21              (1.2) 

Where X is a decision-making vector; the prime denotes 
transposition of the vector X;   represents the feasible 

domain and is a Banach space; n  is the n-dimensional 
Euclidean space; J(X) represents a Lipschitz differential non-
convex function, which contains some disjunctive convex 
functions. We want to find the global minimum of J(X). 

The formulated problem is often observed and studied in 
the real world. The methods or algorithms for solving the non-
convex function are presented in the previous literatures, 
which may be classified into two categories: probabilistic and 
deterministic. The deterministic approach is effective and 
efficient on the condition that initial guess is near the global 
minimum, such as multidimensional geometric method [1], 
tight convex relaxations [2], parametric linearization 
relaxation algorithm[3], Global Barrier Exclusion algorithm[4]. 
The probabilistic methods are genetic algorithms[5], tunneling 
method[6] and auxiliary function approach [7], beta algorithm 
[8], heuristic Kalman algorithm[9], Which may find the 
optimal answer at the expense of requiring a high computation 

burden and offering a probabilistic convergence as well as be 
sensitive to the variation of the parameters. Because a non-
convex function has many minima, some researchers present 
more global optimal algorithms and methods. 

In this paper, we consider a special optimization problem. 
The problem has a special disjunctive structure in which the 
non-convex objective function is composed of two convex 
objective functions. So we can decompose the objective 
function and transform it a convex optimization problem. 

II. DYNAMIC EVOLUTION EQUATION OF THE PROBLEM 

A. Decomposition of the Non-Convex Problem 

Definition 2.1  A vector *X    is called a local 
minimum of the problem, if there exist  a neighborhood 

)( *XS  of *X ,such as 

  )()( * VJXJ      For all  )(, ** XSVX            (2)


Definition 2.2  A vector *X    is called a strong local 

minimum of the problem, if there exist  a neighborhood 

)( *XS  of *X ,such as 

   )()( * VJXJ     For all  )(, ** XSVX        (3)


Definition 2.3  A vector 0X    is called a global 

minimum of the problem, it will be satisfied the following 
form: 

                                
))(()( 0 XJInfXJ

X 


                     (4) 

Lemma 2.1  A vector *X     is  a strong local 
minimum of the non-convex  problem,  which must be 
satisfied the following necessary conditions:  
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                     (5) 
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According to Lemma 2.1, we can gain the analytic solution 
of the problem. Because of the complexity of the problem, it is 
very difficulty to gain the analytic solution. So many 
computation algorithms are proposed, such as developing a 
computation algorithm by the following equation: 

           
ni

x

XJ

dt

dx

i

i ,...,2,1
)(





 

                (6) 

Where   represents a parameter, 0 ; t denotes 
nominal variable. With the development of the time, the search 
process evolves in direction towards a local minimum or a 
global minimum that locates nearby starting point. If we want 
to find a global minimum or make certain that the minimum 
obtained is a global minimum, we must make many guess 
points. Obviously it leads to inefficiency of the approach. 
Considering our special problem, we can decompose the 
original problem into two convex sub-problems, that is 

         )()()( 21 XfXfXJMin                   (7.1)  

S.t. 

                        )(1 XfMin                              (7.2) 

                       )(2 XfMax                           (7.3) 

Where n
nxxxX  '

21 ),...,,(  ; )(Xf j , 

2,1,:  jf n
j are all Lipschitz differential convex 

function. In terms of (7), we get 
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
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       (8) 

Clearly, when 
},,...,2,1

)()(
|arg{ 21* 


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ii

, a 

local minimum is obtained. As above states, the computation 
would take much computer time. To get round of this 
difficulty, we can select the gradient direction of one convex 
objective function of two convex objective functions, which is 
the most influential objective at time t , as the search direction 
in search process. If so, the search direction varies 
discontinuously. Thus it is necessary to define a generalized 
gradient concept.         

B. Generalized Gradient and Evolution Equation 

Definition 2.4 For each point nX  and 

direction nV  , the Clarke’s generalized directional 

derivative ),(0 VX  and the generalized gradient of 

function )(Xf M are defined as follows.  

  
}2,1,

)()(
sup{lim),(

)0,(),(

0 





j
a

YfaVYf
VX jj

XaY            (9) 

Where 

}},2,1,
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limsup{)(),(lim|{)(
0
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
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Yj
a

YfaVYf
YfYfZZcoXf jj

a
MM

XY

n
M    (10) 

. ),(0 VX is a nonempty and compact set. The symbol 

co  stands for a convex hull.  

Proposition 2.1  If a *g  is selected as a effective 

generalized gradient, the *g  must satisfy the following 

condition 

 t
M

t XXggXfXX ,,0))(sgn(, **

      (11) 

Where tX represents the position of vector X at time t . 

 Proof: we construct the following normal cone: 

}0,|{)(  XuXXuXN tt

 

)}(,))(sgn(|{)( ** XfggXfuuXM MMg   

Where *g is selected as a generalized gradient. 









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1

1

1
))(sgn(

M

M
Xf M

   .    

Clearly, )( tXN is included by gM  

)()(sgn( * XMgXf gM 
 

Therefore 

nigXfXX M
t ,...,2,10)(sgn(, *       (12) 

That is 0)(sgn(, *  gXfXX M
t . Qed.   

Definition 2.5  If X  is called as monotone with 
respect to module  , the following inequality holds.  

)()))((sgn(, * t
M

t XXggXfXX  
      (13) 
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Where 
)())(sgn();())(sgn();( * t

g
t

MgM
t XMgXfXMgXfXSX  ;

  stands for norms notation. 

Theorem 2.1  Given arbitrary initial guess 0X , a 

global minimum is obtained by the following evolution 
equation  

          
))(sgn(* Xfg

dt

dX
M

                       (14) 

Where 0 , )(* Xfg M  , ig is a projection of generalized 

gradient g  on ix , also is called generalized differentiation of 

)(XJ  with respect to ix , )',...,,( 21 ngggg   

Proof:  From the function )()(),( ** XJXJXX  , 

we get 

nXXXX  ,0),( *

               (15) 

If *X  is a global solution of the problem 

 0)()(),( ****  XJXJXX            (16) 

So ),( *XX is a Lyapunov function. 

Therefore 

),(),(),( *** XXXXXX t  
),(),( ** XXXaVX tt     )( tXSV  

),(),(),( *** XXXaVXXX tt   
)]()([)]()([ ** XJXJXJaVXJ tt   
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            (17) 

Where 



 tj

j XX
X

f
f ,   ,  , denotes the inner 

product of the vector. Substituting it into ( 17 ), we get 

L
t

M XXgfXX 0,)sgn(),( *            

Where L0 stands for the residual of ),( *XX . g is 

selected as a gradient at time t . 

       )( tXSg                             (18) 

 Thus  L
t

M XXgfXX 0,)sgn(),( *   

L
t

M
t

M XXgfXXggf 0,)sgn(),)(sgn( **   

)( tXX  
    

*
*

)sgn(
),(

gfa
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XXd
M



 

So 

0
),( *




dt

XXd

                            (19) 

Remarks: (19) implies that ),( *XX  is a monotone 

descent function. With the development of the nominal time, 
the search process defined by dynamic equation (18) evolves 
towards the direction where a global minimum locates. When 

0
),( *




dt

XXd , we obtain a global minimum. 

III. NUMERICAL EXAMPLES 

Example 1 (one dimensional optimization problem) 

xexxxxJMin 2.1264 31628)(   

         S. t. 

]5.1,5.1[x  

We can decompose the objective function into two sub-
objective functions 

64
1 28)( xxxf   

xexxf 2.12
2 316)(   

Selecting initial points at random and applying the method 
of this paper to this optimization problem, we obtain 
satisfactory results. The global minimum is 

999.15)(;1  xJx . The search process is illustrated in figure 

1. 
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The curve of function f(x)=8x4+2x6-16x2-3exp(1.2x)

 Figure 1  The search trajectory(initinal value x=-1.25)  

Example 2 (two-dimensional optimization problem) 

Considering the Hump Camel-Bak function: 
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1  xxxxx
x

xXfMin
 

S.t. 

]4,4[)',( 21  xxX  

The function has 6 local minima including two global ones 
and four local minima. Here we decompose the function into 
two sub-functions, that is  

24)
3

4()( 4
221

2
1

4
1

1  xxxx
x

Xf
 

2
2

4
12 41.2)( xxXf   

By using the approach proposed in this paper, the global 

minima are 
TX )712656.0,008984.0()1(   and 

TX )712656.0,008984.0()2(  . The optimum solution is 
9684.0)( * Xf . The search process is illustrated in figure 2. 

 

IV. CONCLUDING REMARKS 

In this paper, a novel approach to find a global optimal 
solution of the special non-convex problems is proposed. 
Because the approach behaves escape mechanism, it can help 
us to prevent the process from a local minimum.  
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