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Abstract—A new discretization scheme ES-QE by combining the 
exact simulation (ES) and quadratic exponential (QE) scheme is 
proposed to simulate the volatility process and price process of 
the Heston model. Performances of new scheme are investigated 
via European option valuation with Monte-Carlo method. 
Numerical results show that the ES-QE scheme has a convergent 
mean-squared-root error with its operating accuracy higher than 
QE schemes and the efficiency much higher than ES’. 
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I. INTRODUCTION 

The well-known Heston model [1] , one of extensions to 
the celebrated Black-Scholes model [2] , has been widely-used 
in derivatives pricing due to its good properties such as 
allowance of “volatility smile” and tractability[3] , etc. 
However, the majority of derivatives, especially the exotic 
options, can’t always be priced in closed-forms because of the 
complexity of underlying assets models [4] [5] .  

Recently, more and more attention has been paid to the 
nearly-exact discretization to stochastic volatility models [6] 
~[10] . The existing schemes can be coarsely grouped into two 
categories. The first line is Taylor-based scheme which 
include the implicit Milstein scheme [6] , Euler full truncated 
scheme[7] , transformed volatility scheme Zhu[8] , etc. The 
other line is called (almost) exact scheme which consists of 
exact simulation [9] (ES), quadratic exponential (QE), 
truncated Gaussian scheme[10]  (TG) and so on.  

In this paper, we follow the second line and propose an 
ES-QE scheme by applying the ES scheme to simulate the 
volatility process and using the QE scheme to simulate the 
price process of Heston model. 

II. ES-QE DISCRETIZATION SCHEME FOR HESTON MODEL 

The Heston model writes  
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In this paper, we design ES-QE scheme to simulate the 
Heston model, by citing Andersen’s work about dealing with 

the price process (including ˆ ( )
t
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  and ˆ ( ) ( )
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V dWu u
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and applying the exact scheme to generate samples of ˆ ( )V t    
directly, instead of moment-matching as described in QE 
scheme. 

A. Simulating Volatility Process by Applying ES Scheme  

According to Cox et al[11] , given ˆ( )V t , ˆ ( )V t    is 
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We obtain the exact sampling of 2' ( )d   by referring to 
Johnson et. al.[12] :  

a) If 1d  , 2' ( )d    2 2
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random variable with mean  1 2  . 

B. Sampling Price Process by using QE Scheme  

Eq. (2) shows that we should have ˆ( )S t , ˆ ( )V t , ˆ ( )
t

t
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and ˆ ( ) ( )
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  in advance before sampling ˆ( )S t   .  
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Dufresne[13]  proposed a moment function scheme to 

sample ˆ ( )
t
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where 1 2,  are certain constants. In this paper, we choose 

1 21 2 1 2,    like [10] .   

Besides, according to QE scheme, the ˆIto  
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Hence, the price process of Heston model can be 
approximated by: 
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and  
2

0,1~Z N is independent of ˆ ( )V t . 

Note that , 0, , 4iK i   , depends on the time-step  as well 

as the constants 1  and 2 .  

C. ES-QE Algorithm 

The algorithm of ES-QE scheme can be summarized as 
follows: 

Step 1: Generate uniform random numbers 1U  and 2U , set 
1

1 1
( ),Z U

   1

2 2
( )Z U

  (for details, to see [14] ); 

Step 2: Compute the non-central parameter  , and then 
generate Poisson distributed random 
variable N ( here   ~ 1 2PN  ); 

Step 3: Given ˆ( )V t , generate ˆ ( )V t   by Eq.(3); 

Step 4: Given ˆ ( )V t , ˆ ( )V t   , ˆ( )S t and 1 2,  , generate 
ˆ( )S t   by Eq. (4).  

III. NUMERICAL SIMULATION 

To test our discretization scheme, we turn to the numerical 
pricing of European call options in the Heston model, thus we 
can computed the analytical result which constitutes a standard 
test case. 

We consider a call option C maturing at time T with 
strike K , the option which underlying price process. For 
simplicity, we denote (0)C to represent the exact option price at 

0  ( T t   ), ˆ (0)C is the estimated value of (0)C by ES-QE. 
We use Monte-Carlo method to get the numerical price of 
option as follows: First, choose N independent samples from 
the initial price set of underlying 
asset ( )

0
ˆ{ ( )}, 1, 2, ,iS t i Paths  ( Paths is the number of 

simulation paths);  and apply our ES-QE scheme to discretize 
the Heston model equidistantly for M times with time-step  , 

thus yielding Paths  independent asset’s price set ( ){ ( )}ˆ i
jS t  in 

which 1,2, ,i    ;Paths 1, 2, ,j M  ; then an European 
call option’s price is 

  ( )

1
ˆ1 ( ( ) )ˆ (0) iN rT

i
N e S T KC 

  . 

Due to the bias generated by the discretization of time, 
ˆ (0)C is usually not equal to (0)C . In general, discretization 

errors of Monte-Carlo method root in two sources[15] : one is 
from the discretization simulation process of continuous time, 

which is known as discretization bias, ˆ(0) (0)bias C C  ; the 

other comes from the estimator’s statistic fluctuates of central-
limit theory, known as root of mean-square error(RMS), 

defined as 2 2
fRMS bias   ,where 

 ˆ(0) (0)f Std C C Paths    

denotes the standard error of samples ( )ˆ{ ( ( ))},if S T  
1, 2, ,i N  .  

To test the accuracy and efficiency of the new scheme, we 
take the same parameters (listed in Table 1) with BK’s in [9]  
with the spot price 100 and the strike 100. Two test cases are 
chosen with respect to the Feller condition. Case 1 is quite 
easy for many discretization schemes, while Case 2, which is 
such that the Feller condition is not satisfied, acts as a 
benchmark test for discretization schemes. 

TABLE I. PARAMETERS 

Case    T (y) (0)V    r  (0)C

1 0. 61 6. 21 -0. 70 1. 0 0. 010201 0. 019 0. 0319 6. 8061

2 1. 00 2. 00 -0. 30 5. 0 0. 09 0. 09 0. 05 34. 9998

All experiments are run with 32T  . We record the bias 
and RMS curves of both QE scheme and ES-QE scheme in 
Figures 1~4. The codes of ES-QE algorithm are written with 
matlab 2012b, and implemented on a notebook PC with Intel 
Core i3@2. 20GHz processor and 4G of RAM, running 
Windows 7 Ultimate. 
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(a) The bias 

 

(b) The RMS 

FIGURE I.  THE ABSOLUTE BIAS AND RMS OF SIMULATION FOR 
CASE 1 

Figure1 (a) and (b) show clearly that as the simulation 
paths increases, both the absolute bias and RMS of both 
schemes generally decrease. However, Figure 1 presents that 
the accuracy of QE discretization scheme only reaches 

2(10 )O
  even after the Paths comes to the maximum, while 

our ES-QE gets 3(10 )O
 . Since the RMS reveals not only the 

bias between analytical solution and estimated value, but also 
the standard error which reflects the degree of discretization of 
samples, RMS can serve as a good measure of the accuracy for 
discretization schemes. Figure 2 shows that ES-QE scheme 
has higher accuracy than QE scheme.  

For the difficult Case 2, Figure 2 (a) and (b) show that the 
absolute bias and RMS of both schemes decrease gradually as 
the simulation paths increases, and ES-QE has higher accuracy 
than QE. All of the results indicate that our ES-QE scheme 
performs better in the accuracy than QE. 

     

The bias 

  

(b) The RMS 

FIGURE II.  THE ABSOLUTE BIAS AND RMS OF SIMULATION FOR 
CASE 2 

TABLE II. RUN TIME OF DIFFERENT PATHS IN TEST CASE1OF QE AND 
ES-QE SCHEME 

Paths 2000 4000 16000 64000 256000 1024000
QE 0. 116s 0. 173s 0. 754s 3. 328s 9. 583s 32. 030s

ES-QE 0. 197s 0. 276s 1. 132s 4. 986s 14. 163s 47. 272s

 
Besides, Table 2 shows the computation efficiency of our 

scheme. The run time of ES-QE scheme is larger than QE 
scheme’s. However, the computation efficiency of ES-QE is 
acceptable if compared with that of exact simulation scheme 
where the run time is measured by hours on the same notebook 
PC.  

IV. CONCLUSIONS 

In this paper, we propose the ES-QE scheme by combining 
the quadratic exponential (QE) and exact simulation (ES) 
scheme and take European call option as a benchmark to test 
the performance of ES-QE. The numerical results show:1) ES-
QE scheme has higher accuracy than QE scheme; 2) the run 
time of ES-QE scheme is larger than QE scheme, but much 
smaller than ES; 3) both the discretization bias and RMS of 
ES-QE scheme are less than QE scheme under the same 
conditions whether the parameters satisfied Feller condition or 
not . These results indicate that the ES-QE scheme is both 
effective and feasible. 
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