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Abstract —In this paper, by constructing a new high-order
parallel alternating group iterative algorithm, we solve the two
point boundary value problem. The main method is to dividing
the system of different equations into a set of subsystem which
can be solved individually in parallel and sixth order accurate.
We have obtained the main results and given some examples to
validate our results in addition. It shows that the analysis is
correct and the algorithm is feasible and efficient.
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I.  INTRODUCTION

The solution for the two-point boundary value problems is
one of the most classic problems in the numerical
approximation of differential equations. By developing the
alternating method, in [1-3], D. J. Evans and A. R. B. Abdullah
had proposed the Alternating Group Explicit (AGE) strategy to
solve the differential equations. D. J. Evans [4] also solved
large linear systems by using iterative methods. This scheme is
capable of parallel computation; however, its truncation error is
only second order or lower. In [5], a fourth order Alternating
Group lterative (AGI) algorithm was constroucted for two
point boundary value problem. Thus we propose to derive a
new alternating group iterative method, which has truncation
error of sixth order.

Il. DIFFERENCE SCHEME

We consider the periodic solution for the following second
order self-adjoint ordinary differential equation (ODE):

du

Lu=——+qu="f, a<x<b,

T (1)
u(a)=u(a+H) @)
Here q, f are given real continuous functions on a<x<b
and H =b-a represents the length of one period, withq > 0.

We partition the interval [a,b] into subintervals of equal
lengh h=H/J and let the grid points be
x, =a+(i-1h, i=1---,3+1. u,,q;, f. denote the finite
difference approximations of u(x),q(x ), f(x) respectively.
The parallel finite difference scheme is constructed as follows:
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Wherer = 2 ,1=1,2,---,J .The truncation error at point

X =X; for (3)is:

” [@} +o(h").

i =T CAiA 8
560| dx
%)
We can rewrite the linear difference (3) in matrix form
Au=F (6)
where
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4 4 5 50 9 50 5%
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u =(U1,U2,"-,UJ) F =(f1l le"" fszl fJ—l’ fJ)T'



We assume that J = 6k , and splitting the matrix A into the — 1 — 1 ) .
sum of three matrices where G, =G, +EZsz =G, +Ezv p I a positive
iteration parameter and
A= G1 + G2 +2 (7) _ —
‘ (Pl +G)™" . (pl +G,)" exist.
where
I1l. THE CONVERGENCE ANALYSIS
Q3 q mxn -
P ' 0 Lemma 1 IfA=(a,) eC™", then||Al|, =/4,, 4, is the
. :ﬁ Y= , max eigenvalue of A"A .
Q, U5 According to lemma 1, if A is real and symmetric matrix,
P q, then||Al|, = p(A), p(A) is the spectral radius of A .
§ 0 o Ej 55? Lemma 2 In (8), G, and G, are both positive definite
3
R -4 matrices. Eliminating 0™ of (9), we have
Q
- (ks) _ () |
©: =30 ' urt =Tu + (10)
4 . P here
54 -4 Q, S _ — _
|-540 54 —4 P, | T=(pl+G,) (pI =G)(pl +G,)) (p! -G,)
in which F=(pl+G,)"[(p! -G)(pl +G)*F +F ]
247 270 271 -4 '
-270 490 -270 54 -4 Now define the matrix:
27 270 733 -540 54 -4 . _ —
4 54 540 980 -540 54 4 T=(pl+G)T(pl +G,) ,
PO = -4 54 540 980 -540 54 -4

which is similar to T and thus has the same eigenvalues as

—4 54 540 980 540 54 4 T .Then it is evident that:

4 54 540 733 270 27
4 54 270 490 -270 p(TM)=p(T)=|T|, <

-4 54 270 247 — — — —
’ (o1 =Gt + 67, < (o1 ~G.)(o1 +G.)”

i=12,---,k 2
980 -540 54 4 3 |p—/¢i |p—77i|
-540 980 -540 54 -4 - miax o+ -m?x o+1) |
p_| 54 540 980 -540 54 4 Hi il
°7) —4 54 540 733 -270 27 241 -210 27 _ _ _
4 54 270 490 -270| P =|-270 490 -270 Here .7 (i=1,2,---,J)are respectively the eigenvalues
s 27 20 e of G, and G, .According to the lemmas, G and G, are
Q3=[O 0 0} positive definite matrices, therefore
000 u >0, >0(=12,---,J) and we have p(T) <1. Hence the
By using (6) and (7), we have convergence of the alternating iterative scheme is proved.

IVV. NUMERICAL EXPERIMENT

(8) We perform the numerical simulations using the following
model problem:

(G, +G,+X)u=F

and let us consider two equivalent forms,

{(pl +G0" = [(pl -G U F] —ﬂ-i- xu=sinx(x+1) 0<x<2r,
(pl+(§2)u(k‘l):[(plf(gl)l](m)qtlz} k=012, (9) dx
' u(0) =u(2x).

(11)
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The exact solution is:

u=sinx (12)

The error bounds of the sixth order scheme are examined
first. The L* errors are defined to bee, = ||u —Uu(x)| ., and
are computed based on the following four different o, and
four different h:

_2rm 27 27 2m
p=1357."" 123060 '120

The results are listed in Table 1 .1t is not hard to see that the

L2 errors of the six-order scheme are order 6 in space, which
comfirms the earlier results in Section 2.

Next, we compare the accuracy of the sixth order AGI
scheme to the fourth order AGI scheme. The computation is
based on the same £, and his taken to be 7 /12 .The
absolute errors(ae) and the percentage errors(pe) for these two
schemes are listed in Table 2 and plotted in Figure 1 and Figure
2 at the end of paper. Evidently, the results show that the sixth
order AGI scheme is more accurate than the fourth order AGI
scheme .

TABLE I. CONVERGENCE RATES FOR THE SIXTH ORDER SCHEME
p=1 p=3 p=5 p=T
J e, *107e, /h®

e,*10 e, /h®|e,*107 | e, /h® | e, *10" | €, /N®

12 | 3.012 | 0.001 301 [ 0001 ) 301 | 0.001 | 301 | 0.001
30 | 0.020 | 0.002 | 1.98 | 0.002 | 1.98 | 0.002 | 1.98 | 0.002
60 | 1.579 | 11.98 | 0.044 | 0.003 | 0.044 | 0.003 | 0.44 | 0.003
0.0009

120 | 146 1463 | 0.017 8.21 | 0.001 | 0.005 6 0.005
TABLE II. ABSOLUTE AND PERCENTAGE ERRORS
J=24,Ax=7112,p=2
Xx=02€| x=105| x=210| x=34C x=42C | x=602
6th-
order
AGI
ae 13310°| .244x10° | 18%10° | 17410 890107 190107
pe | 51%0|.28X10°| 216<10° | 673107 | .103<10° | 733407
4th-
order
AGI
ae 1220 | 2210%| 17610° | 15%a0° | 81110° | 1710
pe | 47%10°| 25640° | 19610 | 61410° | 93610° | 66410°
Exact
solution | .259 .866 .866 -.259 -.866 -.259
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FIGURE I. ABSOLUETERRORS J =24,p=2
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FIGURE Il. PERCENTAGE ERRORS J =24,p =2

V. CONCLUSIONS

In this paper, a sixth order alternating group iterative
algorithm is derived for two point boundary value problem.
The scheme has truncation error of sixth order in space which
is higher than similar fourth order AGI scheme. The scheme is
proved to be stable under reasonable condition. Numerical
example is also prensented.
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