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Abstract— In this paper we mainly deal with the oscillation 
problem of nonlinear impulsive hyperbolic equation with 
functional arguments by using integral averaging method and a 
generalized Riccati technique. A sufficient condition for 
oscillation of the solutions of nonlinear impulsive hyperbolic 
equation with functional arguments is obtained. 
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I. INTRODUCTION 

The theories of nonlinear partial functional differential 
equations are applied in many fields. In recent years the 
research of oscillation to impulsive partial differential 
problems has caught more and more attention. In this paper, 
we study the oscillation property of the impulsive delay 
hyperbolic equation 
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, 1, 2, , (3)k k    

where G is a bounded domain of n with the smooth 
boundary G . We consider the following  boundary condition: 

 0u  ( , ) [0, ).x t G   

Following are the basic hypotheses: 

(H1) ( ) ([0, ); (0, ))r t C   , 
( ), ( ) ([0, ); [0, )), 1, 2, ,ia t b t PC i n      

( , )jq x t ( ;[0, )),C   1,2, , ,j m  where PC denotes 

the class of functions which are piecewise continuous in t  
with discontinuities of the first kind only at , 1, 2,kt t k   .  

(H2) ( ) ([0, ); ), lim ( ) , 1, 2, ,i i
t

t C R t i n 


      . 

(H3) ( ), ( ) ( , )ih u h u C R R   , ( ) ( , ),j s C R R   

, . 1,k k const      ( ) 0uh u  , ( ) 0iuh u  , (0)=0h , (0)=0ih , 

1,2, ,i n  , 
( )

. 0j
j

s
C const

s


    for 0s  . 

1 20 kt t t      , lim k
t

t


  , 1,2,k   . 

We introduce the notations:  ( ) ( , )
G

U t u x t dx   and 

( ) min ( , )j j
x G

q t q x t


 . 

Definition 1.1. By a solution ( , )u x t  of problem (1)-(4) we 

mean a function 2
1( , ) ( [ , ))u x t C G t    which satisfies 

problem (1)-(4), where 

  1
1 0

min 0, min inf (t) .i
i n t

t    
  

Definition 1.2. The solution ( , )u x t  of problem (1)-(4) is 
said to be non- oscillatory in domain  if it is either 
eventually positive or eventually negative. Otherwise, it is 
called oscillatory. 

 
Definition 1.3.  We say that functions 1 2( , )H H  belong to 

a function class  , denoted by 1 2( , )H H  , if 

1 2 ( ;( , [0 )) , )H DH C   satisfy  

( , )=0, ( , )>0 ( =1,2) > ,i iH t t H t s i for t s  

where {( , ) : 0 }D t s s t     . Moreover, the partial 

derivatives 1 /H t   and 2 /H s   exist on D  such that 

1 2
1 1 2 2( , ) ( , ) ( , ) and ( , ) ( , ) ( , ),

H H
s t h s t H s t t s h t s H t s

t s

 
  

 
 

where 1 2, ( ; ).loch h C D   

In recent years, there has been much research activity 
concerning the oscillation theory of nonlinear hyperbolic 
equations with functional arguments by employing Riccati 
technique. Riccati techniques were used to obtain various 
oscillation results. Recently, Y.Shoukaku and N. Yoshida [2] 
derived oscillation criteria by using oscillation criteria of 
Riccati inequality. In this work, we study the hyperbolic 
equation with impulsive. 
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II. MAIN RESULTS 

Theorem 2.1. If for each 0T  , there exist 1 2( , )H H   

and , ,a b c such that T a c b    and 
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then (1)-(4) has no eventually positive solution, where 
( )t  1

0(( , );C T  (0, ))  for some 0 >0T  and 
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Proof. Suppose to the contrary that there is a non-
oscillatory solution ( , )u x t of the problem (1) - (4). Without 

loss of generality we may assume that ( , )>0u x t in 0[ , )G t   

for some 0 >0t because the case where ( , )<0u x t can be treated 
similarly. Since (H2) holds, we see that 

( , ( )) 0iu x t  ( 1,2, )i n   in 1[ , )G t   for some 1 0t t . 

     (1)  For 1, , 1, 2,kt t t t k    , integrating (1) with 
respect to x  over G  ,we obtain 
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By Green's formula and the boundary condition, we have 
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For condition (H3) we can easily obtain 

( , ) ( ( , )) ( ) ( , ) .j j j jG G
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Then ( )>0U t , and it follows that 
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For some {1, 2, , }l m  , we can get 

1( ( ) ( )) ( ) ( ) 0, , .l l kr t U t C q t U t t t t t      

(2) For kt t , 1, 2,k   . From (2)-(3) we have that 

( , ) ( , ) ( , ),k k k kG G G
u x t dx u x t dx u x t      

( , ) ( , ) ( , ),t k t k k t kG G G
u x t dx u x t dx u x t      

that is 

( ) (1 ) ( ), ( ) (1 ) ( ).k k k k k kU t U t U t U t        

Thus we obtain that the functions ( )U t  is a eventually 
positive solution of the impulsive differential inequality 
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 . In fact, ( )w t is continuous 
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follows that for 1t t  
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and for all 1t t  
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which implies that ( )v t  is continuous on 1[ , )t  . 
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That is to say 
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Multiplying (7) by ( )s , we obtain 
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Multiplying (8) by 2 ( , )H t s  and integrating over [ , ]c t  for 

[ , )t c b , we have 
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Letting t b   in the above, we obtain 
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Adding (9) and (10), we easily obtain the following: 
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which contradicts the condition (5). 
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