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Abstract — In this paper, the technique of phase space 
reconstruction and chaos theory are applied to study the chaotic 
characteristics of gold concentration from the continuous channel 
and drill cores in Dayingezhuang Deposit, Jiaodong Gold 
Province, China. The results show that the largest Lyapunov 
exponents are above zero, and correlation fractal dimensions are 
non-integer, showing the chaotic characteristics in the gold 
enrichment processes. The gold concentration series of drill cores 
exhibits stronger chaotic characteristics than channel, showing a 
more complex and uncertain behaviour in drill cores. By 
quantifying the chaotic characteristics of the ore-forming 
elements' series of a typical deposit, this study can provide a new 
method for the identification of mineralization intensity and 
scientific foundation for further determination of the extent of 
deposit concentration and delineation of the target mineralization 
zone. 
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I. INTRODUCTION 

In geology, mineralization is a natural geo-process that 
involves the interaction of fluids with rocks in the earth crust 
in a specific geological environment. Recent studies have 
shown that the mineralization processes often are complex 
system occurring in an anomalous environment [1, 2]. 
Identification of the anomalous extent or the influenced 
domain of the complex mineralization system is essential for 
mineral exploration [3, 4]. The metallogenic elements' 
concentration of a deposit in its mineralization zone invariably 
shows a highly anomalous pattern that is suitable for nonlinear 
analysis [5, 6]. 

In recent years, non-linear study of the geological and 
geochemical data is mainly focusing on fractal or multifractal. 

However, the ore-forming process might be better understood 
through chaotic analysis that belongs to nonlinear 
deterministic model [2]. Therefore, investigation in the ore-
forming process with solid phase and the effect of dynamics 
has great significance. Chaos theory is an important branch of 
nonlinear analysis, and is widely applied in the last few 
decades in a variety of systems, e.g., mechanical, chemical, 
physical, as well as in social sciences [7-10]. In particular, 
chaotic techniques, developed to extract qualitative and 
quantitative information from time series, have been applied 
recently to the study of a large variety of irregular, erratic 
signals and by now have demonstrated to can be very useful to 
reveal deep dynamical features [11]. 

A disseminated-veinlet deposit controlled by a large-scale 
fault often contains large quantities of ore and metal, yet each 
orebody has a complex geometry and irregular element 
distribution patterns in the alteration zones. In this paper, the 
gold concentration series of along drifts and drill cores  were 
selected form Dayingezhuang Deposit, Jiaodong Gold 
Province, China, using the nonlinear analysis method to verify 
that gold concentration series are deterministic chaotic 
phenomena, which is to investigate the dynamical behaviour 
of gold concentration series or the influenced domain of the 
complex mineralization system. 

II. MATERIALS AND METHODS 

A. Data acquisition and Descriptive Statistics 

The Dayingezhuang ore deposit is located in the middle 
segment of the Zhaoping fault zone in Jiaodong gold province, 
China. The Jiaodong gold province is famous for its gold 
production, and structure-controlled alteration rock gold 
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deposits formed in the Mesozoic dominate the province, where 
the pyrite-sericite-quartz altered rock (pay rock) is distributed 
through the whole mineralized zone. And the gold ore deposit 
is with 3000m in length, 30m~140m in width; moreover, ore 
bodies of altered rocks extend like sloping wave in a strike and 
in trend. The reserves of the Dayingezhuang are more than 100 
t, with an estimated annual production greater than 2.6 t [12-
14]. 

The data of gold concentrations are obtained from the 
continuous drill cores sample and channel sample with 1m 
length on -290m levels, and the lengths of data are greater than 
100m. These samples were assayed. The results are used for 
reserve calculation as well as for this study. The gold orebody 
described in this study is delimited based on a cutoff 
concentration of 2 g/t.  

B. Analysis Methods of Chaos Characteristics 

1) Phase space reconstruction: Given a time series {xi}, 
where i = 1, 2, …, N, the phase space can be reconstructed 
using the method of the standard delay-coordinate embedding. 
In this higher dimension space, the vectors of phase space 
reconstruction can be expressed as below: 

( ) [ ( ), ( ), , ( ( 1) ], 1,2, ,i i i iX t x t x t x t m i M           (1) 

where τ is the time delay, m is the embedded dimension, i.e. 
the coordinate number of the phase space, and the constants m, 
N, M and τ are related as = ( 1)M N m   . The dynamic 

properties of systems could be studied by reconstruction of the 
phase space if m≧2D2 + 1, where D2 is the fractal dimension 
of the system[15]. The reconstructed phase space and original 
phase space are diffeomorphically equivalent. Therefore, we 
can investigate the original phase space through studying the 
reconstructed phase space. 

In order to reconstruct the attractor, estimation of the 
embedding dimension m and the embedding delay τ are 
essential. The method of autocorrelation function was used for 
determination of τ as the delay causing the value of (1－1/e) 
its initial of the autocorrelation function[16]. The embedding 
dimensions m were estimated using the Grassberger–Procaccia 
algorithm method proposed by Grassberger[17,18], which is 
suitable for shorter time series. 

2) Correlation dimension: The correlation dimension is a 
measure of the attractor dimensionality. The correlation 
dimension is estimated from the correlation integral, which is 
the number of points in the phase space of dimension m that 
are closer than r. The correlation integral is calculated with the 
Grassberger-Procaccia correlation sum 
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where || ||ij i jd X X  , ||·|| is the maximum distance. 

( )ijr d  is the Heaviside function, with ( ) 1ijr d   for

ijr d , and ( ) 0ijr d   for ijr d . N is the size of the data 

set. For small values of r, the correlation integral will increase 
with the power of the correlation dimension Dc when r 
increases, as follow:  

                      
2( ) DC r r                               (3) 

It is obvious that ln C(r) is linear with ln r, and the 
calculating formula of correlation dimension can be expressed 
as 
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For different values of r, the least squares regression is 
introduced to calculate the points (lnr, lnC(r)) in the non-scale 
region, and the slope is considered as the correlation 
dimension [17]. 

3) Lyapunov exponent: Another technique to determine the 
presence of chaotic behaviour is the largest Lyapunov 
exponent, which measures the divergence of nearby 
trajectories. As the system evolves, the sum of a series of 
attractor point values (in each dimension) will converge or 
diverge.  

The Lyapunov exponent λ indicates the average speed of 
the track separation in the phase space, and it can reflect the 
changing of variables with time and the sensitivity of the 
initial conditions in the chaos dynamical system effectively. If 
the track is shrinking in the direction λ< 0 and the movement 
is stable, the system is not sensitivity to the initial conditions. 
If the track is separating rapidly in the direction λ> 0, the 
system is sensitive to the initial conditions. For the discrete 
system or the nonlinear time series, we only calculate the 
largest Lyapunov exponent λmax, which is an important 
indicator of the existence of chaos and the chaotic 
characteristic in dynamical systems. Thus, a positive 
Lyapunov exponent is a strong indicator of chaos. It is ensured 
that the time series has chaos if only the largest Lyapunov 
exponent larger than zero and it indicate the chaos degree of 
the system directly. 

The method used in calculating the largest Lyapunov 
exponent is based on averaging the local divergence rates or 
the local Lyapunov exponents. Rosenstein et al. proposed a 
new method to calculate the largest Lyapunov exponent from 
an observed series, which is small data method[18]. The 
largest Lyapunov exponent, the definition is: 
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where Δt is the sample period, k is a constant, 
= ( 1)M N m   , dj (i) is the distance of the jth couple nearest 

position after i time steps pass.  

That is 

                 
ˆ(0) min || ||j j jj

d X X 
                              (6) 

And 
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                             (7) 

Here, the mean period P is estimated as the reciprocal of the 
mean frequency of power spectrum. 

III. RESULTS AND DISCUSSION 

In order to reconstruct the original phase space, we first 
estimate reconstruction parameters, the delay time τ and 
embedding dimension m. We calculate both the 
autocorrelation function with time lags of 1–40m, and the 
cures have dropped to (1－1/e) of its initial value of the 
autocorrelation function, as indicated by red arrow in Fig.1. 
The delay time τ for the drill cores and channel samples is 2 
and 3, respectively. 

 
FIGURE I.  AUTOCORRELATION FUNCTION OF THE GOLD 

CONCENTRATION SERIES 

Subsequently, we calculate the embedding dimensions for 
our dataset using the method in the previous section 2.2.2, m, 
from 2 to 26. Fig. 2(a)(b) shows the relationship between the 
correlation function lnC(r) and the radius ln r for increasing m, 
whereas the relationship between the correlation exponent 
values D2 (m), and the embedding dimension values m, are 
shown by red in Fig. 3, m=24 and D2 =3.961 in gold 
concentration series of drill cores samples, m=13 and D2 
=1.044 in gold concentration series of channel samples (Fig.3). 
It can be seen that the correlation exponent value increases 
with the embedding dimension up to a certain value and then 
saturates beyond that value. The saturation of the correlation 
exponent beyond a certain embedding dimension value is an 
indication of the existence of deterministic dynamics.  

 

 
FIGURE II.  lnC(r) VERSUS Lnr PLOTS OF THE GOLD 

CONCENTRATION SERIES:(a) DRILL CORES SAMPLES; (b) 
CHANNEL SAMPLES 

 
FIGURE III.  RELATION BETWEEN CORRELATION 

EXPONENT D2 (m) AND EMBEDDING DIMENSION m: (a) DRILL 
CORES; (b) CHANNEL 

The Lyapunov exponent are estimated using the small data 
sets method in section 2.2.3. The largest Lyapunov exponent is 
λmax=0.0248, 0.003 > 0 for gold concentration of drill cores 
and channel sample, respectively. The result indicated the 
existence of chaotic characteristic at all of the four samples in 
mineralization processes. Moreover, by comparing of all the 
chaotic parameters, correlation dimension, embedding 
dimension and the positive largest Lyapunov exponent, we 
find that the chaotic parameters in channel sample is lower 
than drill cores sample, which indicates that the chaos level of 
the system in drill cores sample is more complex and uncertain 
behaviour. 

IV. CONCLUSIONS 

The chaotic characteristics of the gold concentration series 
at the continuous channel samples and drill cores samples in 
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Dayingezhuang Deposit, Jiaodong Gold Province, China, are 
investigated by the phase space reconstruction technology and 
chaos theory in this study. The results show that the largest 
Lyapunov exponents are above zero, and correlation fractal 
dimensions are non-integer, showing the chaotic 
characteristics in the gold enrichment processes. The study 
provides positive evidence regarding the existence of chaotic 
behaviour in metallogenic elements concentration series, 
leading to better understanding of the dynamics of the geology 
processes.   
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