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Abstract—This paper addresses the issue of similarity measures 
of intuitionistic fuzzy sets (IFSs). Many measures of similarity 
between IFSs proposed before did not consider the abstention 
group influence, which may lead to counter-intuitive results in 
some cases. In this paper, first, we analyze the limitations of the 
existing similarity measures. Then, a new similarity measure of 
intuitionistic fuzzy sets is proposed and several numeric examples 
are given to demonstrate the validity of the proposed measure. 
Finally, the proposed similarity measure is applied to pattern 
recognition and medical diagnosis. 
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I. INTRODUCTION 

Since Zadeh [1] introduced fuzzy sets (FSs) theory, several 
generalized forms have been proposed, among which 
intuitionistic fuzzy sets (IFSs), proposed by Atanassov [2-6], 
have been found to be highly useful to describe the imprecise 
or uncertain information. Gau and Buehrer [7] proposed the 
notion of vague sets, which coincides with that of IFSs, as 
pointed out by Bustince and Burillo [8]. IFSs have been 
widely used for pattern recognition and decision making, 
where the decision information is often imprecise due to time 
pressure or lack of data. Li and Cheng [9] and Mitchell [10] 
applied similarity measures of IFSs to perform classification. 
Wang and Xin [11] introduced some distance measures for 
pattern recognitions. Vlachos and Sergiadis [12] proposed 
discrimination information measure for medical diagnosis. 
Khatibi and Montazer [13] examined the capabilities of FSs 
and IFSs in the medical pattern recognition with uncertainty 
by using five similarity measures. A comparison of the 
distance and similarity measures from the pattern recognition 
point of view was presented by Papakostas, Hatzimichailidis 
and Kaburlasos [14]. 

The similarity measures of IFSs are used to estimate the 
similarity degree between two IFSs. Many researchers, [9, 15, 
16, 18], have shown great interest in the similarity measure 
theory of IFSs. However, the existing measures did not 
consider the abstention group influence and may lead to 
counter-intuitive results in some cases. In this paper, we take 
into account the abstention group and propose a new similarity 
measure based on groups-voting model. Compared with the 
similarity measures in [9, 15, 16, 18], the proposed measure 
can overcome some drawbacks of counter-intuition. Several 
numeric examples are given to demonstrate the validity of the 

proposed measure. Additionally, applications to pattern 
recognition and medical diagnosis are also presented. 

II. A BRIEF INTRODUCTION OF INTUITIONISTIC FUZZY 

SETS 

Definition 2.1 ([16]). Let X  be a universe of discourse. 
An intuitionistic fuzzy set A  in X  is an object with the 
form: { , ( ), ( ) | }A AA x x x x X   , where    : 0,1 , : 0,1A AX v X   , 

with the condition 0 ( ) ( ) 1A Ax x    , x X  . 

The numbers  A x  and ( )A x  denote the degree of 

membership and non-membership of x to A , respectively. For 
each IFS A  in X , we call :      1A A Ax x v x    , the 

intuitionistic index of x  in A , which denotes the hesitancy 
degree of x  to A . For convenience, ( )IFS X denote the set of 
all the IFSs in X , and let , ( )A B IFS X , then two of their 
relations and operations are defined as ([2]):  (1) A B if and 
only if    A Bx x   and    A Bx x  , for each x X ; (2) 

A B  if and only if A B  and A B ; (3) 

    , ,C
A AA x x x x X   . 

III. SIMILARITY MEASURES BETWEEN IFSS 

The similarity measure indicates the closeness of IFSs, and 
the larger similarity measure corresponds to the closer degree 
of two IFSs. However, the existing similarity measures can 
lead to count-intuitive results in some cases or can’t 
distinguish which two IFSs are closer, which is demonstrated 
by some numeric examples. And then a new similarity 
measure is proposed. 

A. Analysis on Existing Similarity Measures  

Definition 3.1 ([9]). A real-valued function 
     S:IFS X IFS X 0,1   is called a similarity measure on IFS 

(X), if it satisfies the axiomatic requirements: (1) 
 0 , 1S A B  ; (2)  , 1S A B  if A B ; (3)    , ,S A B S B A ; 

(4)    , ,S A C S A B and    , ,S A C S B C  if A B C  . 

For two IFSs A and B , Li and Cheng [9] proposed the 
following similarity measure between IFS A and IFS B . For 
each IFS A , let    ( ) 1

2
A i A i

A i

x v x
x




 
 , 

where  1 2, , , nx X x x x   .  
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Then  

      
1

1
1

1
, 1

n pp

A i B ip
i

S A B x x
n

 


    
 
                  (1) 

If let 1p  , it is reduced to the following formula: 

     2
1

1
, 1

n

A i B i
i

S A B x x
n

 


                              (2) 

Example 3.1. Let  ,0.1,0.2A x ,  ,0.4,0.4B x  and 

 ,0.2,0.2C x be three IFSs. Intuitively, we can see that 

IFS A is much more similar to IFS C than to IFS B . 

However, if we use the Eq. (2) to calculate the similarity 
measures, then    2 2, , 0.95S A B S A C  , which is not 

reasonable. For two IFSs A and B , Xu et al. [15, 18] defined 
similarity measures between A and B as follow: 

              
1

3
1

1
, 1

2

  
   



        


n

A j B j A j B j A j B j
j

S A B x x v x v x x x
n

    

(3) 

Where 0  . 

           

         
         

4
1

1

, min , min ,

min , max ,

max , max ,

n

A j B j A j B j
j

n

A j B j A j B j
j

A j B j A j B j

S A B x x v x v x

x x x x

v x v x x x

 

   

 






 


  
  



            (4) 

If let     and 1  in Eq. (3), then it is reduced to 
the following formulas, respectively: 

              5 , 1 max , ,       A j B j A j B j A j B j
j

S A B x x v x v x x x       

(5) 

              6
1

1
, 1

2
   



      
n

A j B j A j B j A j B j
j

S A B x x v x v x x x
n

       

(6) 

Example 3.2. Let  ,0.3,0.5A x ,  ,0.4,0.4B x  

and  ,0.4,0.5C x be three IFSs. Intuitively, we can see that 

IFS A is much more similar to IFS C than to IFS B . 

However, if we use the Eqs. (4), (5) and (6) to calculate the 
similarity measures, then we have the results: by (4) we 
have    4 4, , 0.8182S A B S A C  ; by (5) we 

have    5 5, , 0.9S A B S A C  ; by (6) we 

have    6 6, , 0.9S A B S A C  . 

Obviously, these results are not reasonable. 

In addition, Wei et al. [16] gave another similarity measure 
of IFSs based on entropy theory, as follows. 

   
 7

1

1 min ,1
,

1 max ,

n
i i

i i i

v
S A B

n v







                  (7) 

where    i A i B ix x    ,    i A i B iv v x v x  . 

Example 3.3. Let  ,0.5,0.5A x ,  ,0.4,0.6B x  and 

 ,0.4,0.4C x be three IFSs. If we use the Eq. (7) to 

calculate the similarity measures, then we 
have    7 7, , 0.8182S A B S A C  . Obviously, we can not 

distinguish which one IFS A is closer to. 

B. A New Similarity Measure 

Now we explain the problem in example 3.3 in the view of 
groups voting. For an alternative { , ( ), ( ) | }i A i A i iA x x x x X   , 

symbols ( )A ix , ( )A ix , ( )A ix  denote shares of the supporters, 
the dissenters and the abstention group, respectively. Then the 
shares of the supporters and the dissenters to alternative A  are 
50% and 50%, respectively. To alternative B , the 
corresponding shares are 40% and 60%. To alternative C , the 
shares of the supporters, the dissenters and the abstention 
group are 40%, 40% and 20%, respectively. It is obvious that 
A  is more similar to C  than to B . 

In the following, we consider the abstention group 
influence and give a new definition for a similarity measure 
between IFSs A and B as follows.  

Definition 3.2. Let  1 2, , , nX x x x  be a finite universe of 

discourse. For each IFS { , ( ), ( ) | }i A i A i iA x x x x X   , let 

         ' 1

2
A i A i

A i A i A i

x x
x x x

 
  

 
  , 

   '
A i A ix x  . Then a similarity measure between A  

and B is given by: 

         
1/

' ' ' '

1/
1

1
, 1 ( 0)


 


    



    
   
 


n

A i B i A i B i
j

S A B x x x x
n

    (8) 

In Eq. (8), 
   1

2
A i A ix x  

denotes the possibility that 

some people from the abstention group tend to cast votes. 
Firstly, we suppose the possibilities that people from the 
abstention group tend to cast votes and some are dissenters are 
the same, i.e. we weigh  A ix with 1/2, then we modify the 

weigh by 
   

2
A i A ix x 

. In the view of group voting, if 

shares of the supporters and the dissenters are 80% and 10%, 
respectively, then the majority of the abstention group will 
tend to cast votes, which indicates that the more the supporters 
are, the larger proportion that people from the abstention 
group tend to cast votes.  

Next, the examples 3.1-3.3 are again considered and used 
to demonstrate the feasibility and validity of the new similarity 
measure. 

If let 1  , then the Eq. (8) is reduced to the following 
formula: 

         1 ' ' ' '

1

1
, 1

n

A i B i A i B i

j

S A B x x x x
n

   


    
 
 
 
           (9) 
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where          ' 1

2
A i A i

A i A i A i

x x
x x x

 
  

 
  , 

   '
A i A ix x  . 

Example 3.1’. Let  ,0.1,0.2A x ,  ,0.4,0.4B x  

and  ,0.2,0.2C x be three IFSs. Now we calculate the 

similarity measures  ,S A B and  ,S A C by Eq. (9). 

Then  1 , 0.715S A B  ,  1 , 0.915S A C  , which indicates that 

IFS A is much more similar to IFS C than to IFS B and it is 
consistent with intuition. 

Example 3.2’. Let  ,0.3,0.5A x ,  ,0.4,0.4B x  and 

 ,0.4,0.5C x  be three IFSs. By Eq. (9), we 

get  1 , 0.78S A B  ,  1 , 0.935S A C  , which indicates that 

IFS A is much more similar to IFS C than to IFS B and it is 
consistent with intuition. 

Example 3.3’. Let  ,0.5,0.5A x ,  ,0.4,0.6B x  and 

 ,0.4,0.4C x be three IFSs. By Eq. (9), we 

get  1 , 0.8S A B  ,  1 , 0.9S A C  , which indicates that IFS A is 

much more similar to IFS C than to IFS B and it is consistent 
with the analysis above. 

IV. APPLICATION  

IFSs are a suitable tool to cope with imperfect information. 
In this section we present applications in the context of pattern 
recognition and medical diagnosis. 

A. Pattern Recognition 

We apply the similarity measure defined by (9) to solve 
some pattern recognition problems with intuitionistic fuzzy 
information, which involves the following steps:  

Step 1: Suppose that there exist m patterns represented by 
IFSs { , ( ), ( ) | }

i ii j A j A j jA x x x x X    1,2, ,i m   in the feature 

space  1 2, , , mX x x x  , and suppose that there is a sample to 

be recognized, which is represented by an IFS 
{ , ( ), ( ) | }j B j B j jB x x x x X   .  

Step 2: Calculate the similarity measure  ,iS A B  

between iA and B by Eq. (9).  

Step 3: Select the largest one, denoted by  0 ,iS A B , 

from   , 1,2, ,iS A B i m  . 

Then the sample B belongs to the pattern 0iA . 

Now we consider an example of a pattern recognition 
problem on the classification of hybrid mineral.  

Example 4.1. We consider the same data as in [11]. 
Assume that there are five kinds of mineral fields and an 
unknown hybrid mineral, which are featured by the content of 
six minerals. We can express the five kinds of typical hybrid 
mineral by five IFSs 1C , 2C , 3C , 4C , 5C  in the feature space 

 1 6,...,X x x  (see the following Table 1). Given another kind 

of hybrid mineral  




1 2 3

4 5 6

,0.629,0,303 , ,0,524,0.356 , ,0.210,0.689 ,

,0.218,0.753 , ,0.069,0.876 , ,0.658,0.256

B x x x

x x x

  

Our purpose is to distinguish which field the unknown 
pattern B belongs to.  

Using above steps and calculating the similarity 
degree  ,iS A B  between iA  and B by (9), we can 

get:      1 2 3, 0.5514, , 0.4733, , 0.2184  S C B S C B S C B , 

   4 5, 0.6647, , 0.4662 S C B S C B . 

TABLE I. THE DATA OF EXAMPLE 4.1. 

 1x  2x  3x  4x  5x  6x  

1C (0.74,0.13
) 

(0.03,0.82
) 

(0.19,0.6
3) 

(0.49,0.3
6) 

(0.02,0.63) (0.74,0.13)

2C (0.12,0.67
) 

(0.03,0.83
) 

(0.05,0.8
0) 

(0.14,0.6
5) 

(0.02,0.82) (0.39,0.65)

3C (0.45,0.39
) 

(0.66,0.30
) 

(1.00,0.0
0) 

(1.00,0.0
0) 

(1.00,0.00) (1.00,0.00)

4C (0.28,0.72
) 

(0.52,0.37
) 

(0.47,0.4
2) 

(0.30,0.6
6) 

(0.19,0.81) (0.74,0.12)

5C (0.33,0.45
) 

(1.00,0.00
) 

(0.18,0.7
3) 

(0.16,0.7
7) 

(0.05,0.90) (0.68,0.26)

 

Clearly, the similarity degree  4 ,S C B  between 4C and B is 

the largest one. Hence hybrid mineral B should be produced by 
the mineral field 4C , which is different from the result in [11] 
that hybrid mineral B  is produced by the mineral field 5C . 
However, analyzing the feature of hybrid minerals 4C , 5C  and 
the unknown pattern B , we can see that the unknown 
pattern B is much more similar to the 4C than to 5C . So the 
result in this paper is more consistent with reality. 

B. Medical Diagnosis 

The theory of IFSs has been utilized to perform medical 
diagnosis in [12, 16, 17]. Here, we give an example to show 
how to solve medical diagnosis problem with intuitionistic 
fuzzy information by our similarity measure defined in Eq. (9). 

Example 4.2. We consider the same data as in [12, 17]. 
Assume that there are a set of diagnoses D , a set of 
symptoms S and a set of patients P , where  




, , ,

,

D Viral fever Malaria Typhoid

Stomach problem Chest pain


,  




, , ,

,

S Temperature Headache Sotmach pain

Cough Chest pain


 

 , , ,P Al Bob Joe Ted . 

Table 2 presents the characteristic symptoms for the 
considered diagnoses, and Table 3 gives the symptoms for 
each patient. Each element of the tables is given in the form of 
a pair of numbers corresponding to the membership   and 
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non-membership , respectively. One needs to find a proper 
diagnosis for each patient , 1,2,3,4ip i   

TABLE II. SYMPTOMS CHARACTERISTIC FOR THE CONSIDERED 
DIAGNOSES. 

 

Viral 
fever 

Malaria 
Typhoi
d 

Stomac
h 
problem 

Chest 
proble
m 

Temperature 
(0.4,0.0) (0.7,0.0) (0.3,0.3) (0.1,0.7) (0.1,0.8)

Headache 
(0.3,0.5) (0.2,0.6) (0.6,0.1) (0.2,0.4) (0.0,0.8)

Stomach 
pain (0.1,0.7) (0.0,0.9) (0.2,0.7) (0.8,0.0) (0.2,0.8)

Cough 
(0.4,0.3) (0.7,0.0) (0.2,0.6) (0.2,0.7) (0.2,0.8)

Chest pain 
(0.1,0.7) (0.1,0.8) (0.1,0.9) (0.2,0.7) (0.8,0.1)

TABLE III. SYMPTOMS CHARACTERISTIC FOR THE CONSIDERED 
PATIENTS. 

 
Temperature Headache 

Stomach 
pain 

Cough 
Chest 
pain 

Al (0.8,0.1) (0.6,0.1) (0.2,0.8) (0.6,0.1) (0.1,0.6)
Bob (0.0,0.8) (0.4,0.4) (0.6,0.1) (0.1,0.7) (0.1,0.8)

Joe (0.8,0.1) (0.8,0.1) (0.0,0.6) (0.2,0.7) (0.0,0.5)
Ted (0.6,0.1) (0.5,0.4) (0.3,0.4) (0.7,0.2) (0.3,0.4)

 

Now we show how to utilize the proposed similarity 
measure (9) to derive a proper diagnosis for each 
patient , 1,2,3,4ip i  . We first calculate the similarity 

degree  ,i kS p d between symptoms of each patient 

, 1,2,3,4ip i  and the set of symptoms that are characteristic 
for each diagnosis , 1,2,3,4,5kd D k  . From Eq. (9), we have 

         ' ' ' '

1

1
, 1

i k i k

n

i k p i d i p i d i
j

S p d x x x x
n

   


    
 
 
 
       (10) 

where 

             ' '1
, 

2

 
    

 
  i i

i i i i i

x x
x x x x x     (11) 

Accordingly, we get Table 4 and Table 5 by (11). Each 
element of the tables is given in the form of a pair of numbers 
corresponding to the membership ' and non-membership ' , 
respectively. So we can obtain Table 6 that presents all the 
results for the considered patients. 

 

 

 

 

 

 

TABLE IV. SYMPTOMS CHARACTERISTIC FOR THE CONSIDERED 
DIAGNOSES. 

 Viral  
fever 

Malaria Typhoid 
Stomach 
problem 

Chest 
problem 

Temperat
ure 

(0.82,0.0)
(0.955,0.0
) 

(0.5,0.3) 
(0.14,0.7
) 

(0.115,0.
8) 

Headach
e 

(0.38,0.5) (0.26,0.6) 
(0.825,0.
1) 

(0.36,0.4
) 

(0.02,0.8
) 

Stomach 
pain 

(0.14,0.7)
(0.005,0.9
) 

(0.225,0.
7) 

(0.98,0.0
) 

(0.2,0.8) 

Cough (0.565,0.
3) 

(0.955,0.0
) 

(0.26,0.6
) 

(0.225,0.
7) 

(0.2,0.8) 

Chest 
pain 

(0.14,0.7) (0.115,0.8) (0.1,0.9) 
(0.225,0.
7) 

(0.885,0.
1) 

TABLE V. SYMPTOMS CHARACTERISTIC FOR THE CONSIDERED 
PATIENTS. 

 
Temperature Headache 

Stomach 
pain 

Cough Chest pain

Al 
(0.885,0.1) (0.675,0.1) (0.2,0.8) 

 
(0.675,0.1)

(0.175,0.6)

Bob
(0.02,0.8) (0.5,0.4) 

 
(0.675,0.1) 

(0.14,0.7) (0.115,0.8)

Joe (0.885,0.1) (0.885,0.1) (0.08,0.6) (0.225,0.7) (0.125,0.5)

Ted
(0.675,0.1) (0.555,0.4)

 
(0.435,0.4) 

(0.775,0.2) (0.435,0.4)

TABLE VI. SIMILARITIES OF SYMPTOMS FOR EACH PATIENT TO 
THE CONSIDERED SET OF POSSIBLE DIAGNOSES 

 Viral
 
fever

Malaria Typhoid 
Stomach 
problem 

Chest 
problem

Al 0.707 0.596 0.47 0.052 0.042 
Bob 0.219 0.412 0.402 0.79 0.244 
Joe 0.563 0.318 0.705 0.206 0.072 
Ted 0.615 0.419 0.359 0.233 0.049 

For example, we can get  1 1,S p d by (10): 

 1 1

1
, 1 0.885 0.82 0.1 0.0 0.675 0.38

5
0.1 0.5 0.2 0.14 0.8 0.7 0.675 0.565

0.1 0.3 0.175 0.14 0.6 0.7 0.707

      

       

      

S p d

 

Then the proper diagnosis kd for the patient ip is derived 
according to the biggest numerical value from the obtained 
similarity measures in Table 6. 

From Table 6, we can see Al suffers from Viral fever, Bob 
from Stomach problems, Joe from Typhoid and Ted from Viral 
Fever. These results are in agreement with the ones obtained 
by Vlachos and Sergiadis [12]. Compared with the results in 
[17], the diagnoses for Bob, Joe and Ted are the same, but the 
diagnosis for Al is different. 

V. CONCLUSIONS 

In this paper, we analyze the limitations of existing 
similarity measures. We also discuss the importance to search 
for a better similarity measure. Then, we take account of the 
abstention group influence and develop a new measure to 
address limitations of previous ones. The validity of our 
measure is illustrated through some numeric examples. Finally, 
we apply the newly proposed similarity measure to pattern 
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recognition and medical diagnosis. 
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