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Abstract—Formal concept analysis (FCA) provides a theoretical 
framework for learning hierarchies of knowledge clusters. This 
paper is devoted to the study of uncertainty in FCA. We 
introduce the notions of uncertain concept and its accuracy 
degree in FCA, and present approaches to characterizing 
accuracy degree of uncertain concepts from approximation 
operators and covering rough set points of views. 
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I. INTRODUCTION 

Formal concept analysis (FCA) was independently 
introduced by Wille in the 1980's [1]. FCA deals with 
relational information structures (formal contexts) derived 
from human investigation (judgment, observation, measure, 
etc) and provide a theoretical framework for learning 
hierarchies of knowledge clusters called formal concepts. As 
an efficient tool of data analysis and knowledge processing, 
FCA has been applied in many fields, such as knowledge 
engineering, data mining, information searches, and software 
engineering [1, 2]. 

Works on FCA are progressing rapidly. It has become 
increasingly popular among various methods of conceptual 
data analysis and knowledge representation. Most of the 
researches on FCA concentrate on such topics as: construction 
of the concept lattice [3, 4], pruning of the concept lattice [5, 
6], acquisition of rules [7], relationship between the concept 
lattice and rough set [8, 9], and applications [10, 11]. The 
combination of FCA and fuzzy set theory is another important 
issue. Many efforts have been made to compare and combine 
these two theories. Several fuzzy extensions of formal concept 
analysis have been addressed in the literature. A central notion 
in existing approaches is the so called fuzzy formal context 
whose entries become now degrees from a totally ordered set 
L  (generally  0,1L  ), whereby property satisfaction 

becomes a matter of degree [12-15]. 

In the present paper, we attempt to conduct a further study 
on the uncertainty in a formal context. In FCA, formal concept 
is a key notion. It is defined by an (set of objects, set of 
attributes) pair. From extent point of view, these sets of 
objects are (exact) concepts. In this paper, we introduce the 
notions of uncertain concept and its accuracy degree in FCA, 
and present approaches to characterizing accuracy degree. The 
paper is organized as follows: In Section 2, we recall some 
notions and properties of FCA. In Section 3, the notions of 
uncertain concept and its accuracy degree in FCA are 
proposed. Based on approximation operators, the accuracy 
degree of uncertain concept is presented. Furthermore, in 

Section 4, we construct another kind of accuracy degree from 
covering rough set point of view. The paper is completed with 
some concluding remarks. 

II. OVERVIEW OF FORMAL CONCEPT ANALYSIS 

Formal Concept Analysis [1] provides a theoretical 
framework for learning hierarchies of knowledge clusters 
called formal concepts. A basic notion in FCA is the formal 
context. Given a set G  of objects and a set M  of attributes 
(also called properties), a formal context consists of a triple 

( , , )G M I   where I  specifies (Boolean) relationships 
between objects of G and attributes of M , i.e., 
I G M  .Usually, formal contexts are given under the form 
of a table that formalizes these relationships. A table entry 
indicates whether an object has the attribute (this is denoted by 
a 1), or not (it is often indicated by 0). Let 

( ) { ;( , ) }I g m M g m I    be the set of attributes satisfied 

by object g , and let ( ) { ;( , ) }I m g G g m I    be the set of 
objects that satisfy the attribute m . 

Given a formal context ( , , )G M I  . We define the set-

valued operators : ( ) ( )P G P M  , and : ( ) ( )P M P G  as 

follows [1]: for each ( )A P G and ( )B P M , 

{ ; (( , ) )}A m M g A g m I                                  (1) 

{ ; (( , ) )}B g G m B g m I                                   (2) 

That is to say, A   is the set of all attributes which is 
satisfied all objects in A , whereas B   is the set of all objects 
which satisfies all attributes in B . A formal concept of   is 
defined as a pair ( , )A B  with A G , B M , A B   and 

B A  . A  is called the extent of the formal concept ( , )A B , 
whereas B  is called the intent. 

The main problem in formal concept analysis is that of 
extracting formal concepts from object/attribute relations. The 
set of all formal concepts equipped with a partial order 
(denoted by  ) defined as: 1 1 2 2( , ) ( , )X Y X Y  if and only if 

1 2X X  (or equivalently, 2 1Y Y ), forms a complete lattice, 

called the concept lattice of    and denoted by ( )L  . Its 
structure is given by the following theorem. 

Theorem 1 [1] The concept lattice ( )L   is a complete 
lattice in which infimum and supremum are given by: 

( , ) ( , ( ) )j J j j j J j j J jX Y X Y 
                            (3) 
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( , ) (( ) , )j J j j j J j j J jX Y X Y
                           (4) 

For a formal context ( , , )G M I  , the following 

properties can be easily proved [1]: for any 1 2, ,X X X G , 

1 2, ,Y Y Y M , 

(1) 1 2 2 1X X X X    , 1 2 2 1Y Y Y Y    . 

(2) 1 2 1 2( )X X X X    , 1 2 1 2( )Y Y Y Y    . 

(3) 1 2 1 2( )X X X X    , 1 2 1 2( )Y Y Y Y    . 

(4) X X  , Y Y  . 

(5) X X  , Y Y  . 

(6) ( , )X X   and ( , )Y Y   are all formal concepts. 

Example 1 [16] We consider the following formal context 
( , , )G M I  , where {1, 2,3,4,5,6,7,8}G  , 

{ , , , , , , , , }M a b c d e f g h i , and I  is represented in the 
following table. 

TABLE Ⅰ. THE FORMAL CONTEXT ( , , )G M I  . 

 a  b  c  d  e f  g  h  i
1 1 1 0 0 0 0 1 0 0 

2 1 1 0 0 0 0 1 1 0 

3 1 1 1 0 0 0 1 1 0 

4 1 0 1 0 0 0 1 1 1 

5 1 1 0 1 0 1 0 0 0 

6 1 1 1 1 0 1 0 0 0 

7 1 0 1 1 1 0 0 0 0 

8 1 0 1 1 0 1 0 0 0 

The formal concepts in this formal context are listed as 
follows: 

( ,{ , , , , , , , , })a b c d e f g h i , ({3},{ , , , , })a b c g h , 

({4},{ , , , , })a c g h i , 

({6},{ , , , , })a b c d f , ({7},{ , , , })a c d e , ({2,3},{ , , , })a b g h , 

({3, 4},{ , , , })a c g h , ({3,6},{ , , })a b c , ({5,6},{ , , , })a b d f , 

({6,8},{ , , , })a c d f , 

({1, 2,3},{ , , })a b g , ({2,3,4},{ , , })a g h , 

({5,6,8},{ , , })a d f , 

({6,7,8},{ , , })a c d , ({1, 2,3, 4},{ , })a g , ({5,6,7,8},{ , })a g , 

({1, 2,3,5,6},{ , })a b , ({3,4,6,7,8},{ , })a c , 

({1, 2,3, 4,5,6,7,8},{ })a . 

III. UNCERTAIN CONCEPT IN FCA 

Let ( , , )G M I   be a formal context. For a formal 

concept ( , )X Y , the extent X  and intent Y  uniquely 

determine each other. Actually, we have 
( ) {( , ); }L X X X G    . That is to say, every formal 

concept can be described from extent point of view. In what 
follows, we denote ( ) { ; }L X X G    . ( )L    can be 
looked upon the set of all formal concepts with respect to  . 
Clearly, we have 

Theorem 2 ( )L    is a cover of set G of objects. That is to 

say, X G X G
  . 

Definition 1 Let ( , , )G M I   be a formal context. For 

every X G , the lower approximation X   and  upper 

approximation X   of X  are defined respectively by 

{ ( ); }X Y L Y X                                   (5) 

{ ( ); }X Y L X Y                                   (6) 

Theorem 3 Let ( , , )G M I   be a formal context and 

X G . X X 
   if and only if  X X  . 

Proof. Assume that X X  . By ( )X L   , we have 

( )X L    and hence { ( ); }X Y L Y X X     , 

{ ( ); }X Y L X Y X      and consequently X X 
  . 

Conversely, we assume that X X 
  . By X X X 

   ,  it 
follows that { ( ); }X X Y L X Y     .Thus we 
have

( { ( ); }) { ; ( ); }X Y L X Y Y Y L X Y           , 

( { ; ( ); }) { ; ( ); }

{ ; ( ); } .

X Y Y L X Y Y Y L X Y

Y Y L X Y X

 


         
   

 


 

Consequently, we have X X  . 

Definition 2 Let ( , , )G M I   be a formal context and 

X G . If X X  , i.e., X is the extent of a formal 
concept, then X  is called an exact concept; otherwise X  is 
called a uncertain concept. 

Definition 3 Let ( , , )G M I   be a formal context and 

X G . The accuracy degree ( )Ad X  of X  is defined as 

( )
X

Ad X
X




 , where X   and X   are cardinality of X   

and X   respectively. 

By Theorem 3, X  is an exact concept, if and only if 
X X 

  . Thus we have the following corollary: 

Corollary 1 Let ( , , )G M I   be a formal context and 
X G . 

(1) 0 ( ) 1Ad X  . 

(2) ( ) 1Ad X   if and only if X  is an exact concept. 

Theorem 4 Let ( , , )G M I   be a formal context and 

515



 

 

X G . Then ( )X L   . 

Proof. By the definition, we have { ( ); }X Y L X Y    . 
It follows that 

( { ( ); }) { ; ( ); }X Y L X Y Y Y L X Y           ,  

( { ; ( ); }) { ; ( ); }

{ ; ( ); } .

X Y Y L X Y Y Y L X Y

Y Y L X Y X

 



   



      

   

 


 

Thus we have X X   and hence ( )X L   . 

This theorem shows that, for every X G , there is the 
least object in the set { ( ); }Y L X Y    (with respect to set 
inclusion relation  ). The following example shows that for 
the set { ( ); }Y L X Y   , the greatest objects need not exist. 

Example 2 We consider the formal context ( , , )G M I   

in Example 1. Let {3, 4,6}X  .  It follows that  

{ ( ); } {{1, 2, 3, 4, 5, 6, 7,8}}Y L X Y    , 

{ ( ); } {1,2,3,4,5,6,7,8}X Y L X Y     . 

Thus X   is an exact concept. Similarly, we have  

{ ( ); } {{3},{4},{6},{3, 4},{3,6}}Y L Y X    . 

It has no greatest objects. Furthermore, 
{ ( ); }X Y L Y X X      and X  is not an exact 

concept. Consequently, 
3

( )
8

X
Ad X

X



  . 

The following theorem shows that ( )L    is a topological 
base of a topology on G . 

Theorem 5 Let ( , , )G M I   be a formal context.   is a 

topology on G  and ( )L    is a base of   , where 

{ ; ( )( )}X BA B L A X       . 

Proof. (1) X B X G   is trivial. (2) Let 1 2, ( )X X L   . 

For every 1 2x X X  , we have 1{ }x X , 1{ }x X   and 

hence 1{ }x X  . Similarly, 2{ }x X   and thus 

1 2{ }x X X    . By 
1 ( )X L     we know 

that { ; ( )( )}X BA B L A X        is a topology and ( )L    
is a topological base of   . 

IV. ROUGHNESS OF UNCERTAIN CONCEPTS 

Given a formal context ( , , )G M I  . We note that   
can be thought as an information system. In the framework of 
rough set, Each Y M  induces an indiscernibility relation 

YR  on G  which is defined as ( , ) Yx y R  if and only if 

( , ) ( , )x g I y g I    for each g Y . We suppose that 

( , )X Y  is a formal concept in  . By X Y   and Y X  , 
it follows that X  is an equivalence class with respect to the 

equivalence relation YR . 

In what follows, we consider covering rough set model 
[17], which is a generalization of Pawlak's rough set [18]. For 
a formal context ( , , )G M I  , by Theorem 2, ( )L    is a 

cover of G  and ( , ( ))G L    forms a covering approximation 
space. In this section, we discuss the roughness of the concept 
in ( , , )G M I   from rough set point of view. 

For each x G , ( ) { ; ( ), }N x X X L x X     is 

called the neighborhood of x  with respect to ( )L    [19]. 

Theorem 6 Let ( , , )G M I   be a formal context. Then 

we have ( ) { }N x x   for every x G . 

Proof. Let x G . We have { } ( )x L   . Furthermore, if 

( )X L    such that x X , then { }x X   and hence 

{ }x X X   . It follows that 

( ) { ; ( ), } { }N x X X L x X x     . 

Based on covering rough approximation operators [19], we 
propose the following definition. 

Definition 4 Let ( , , )G M I   be a formal context and 

X G . The covering based lower approximation ( )R X  and 

upper approximation ( )R X  of X  is defined respectively as 
follows: 

( ) { ; ( ) } { ;{ } }R X x G N x X x G x X             (7) 

( ) { ; ( ) } { ;{ } }R X x G N x X x G x X              (8) 

The accuracy degree ( )CAd X  of X  is defined as 

( )
( )

( )
C

R X
Ad X

R X
 . 

The properties of operators ( )R X  and ( )R X  can be 
discussed based on covering rough set theory. For example, 
we have 

Theorem 7 Let ( , , )G M I   be a formal context and 
X G . Then  

( ) {{ } ; ,{ } }R X x x G x X    . 

Proof. For every x G , by { }x x  , it follows that  

( ) {{ } ; ,{ } }R X x x G x X    . 

Conversely, if {{ } ; ,{ } }y x x G x X    , then there 

exists x G  such that { }y x   and { }x X  . It follows 
that { } { }y x   and hence { } { } { }y x x X     . By the 

definition, we have ( )y R X . Thus 

( ) {{ } ; ,{ } }R X x x G x X     as required. 
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Example 3 We consider the formal context ( , , )G M I   

in Example 1. Let {3, 4,6}X  . By routine computation, we 

have {1} {1,2,3}  , {2} {2,3}  ,{3} {3}  , {4} {4}  , {5} {5,6}  , 

{6} {6}  , {7} {7}  , {8} {6,8}  .It follows that 

( ) { ,{ } } {3,4,6}R X x G x X    , 

( ) { ; ( ) } {1, 2,3, 4,5, 6,8}R X x G N x X     . 

Consequently, 
( ) 3

( )
7( )

C

R X
Ad X

R X
  . We note that 

( )R X  is a uncertain concept, ( )R X  is an exact concept. If 

we let {4,5}Y  , then ( ) {4}R X  , ( ) {4,5}R X  . It follows 

that ( )R X  is an exact concept, whereas ( )R X  is an 
uncertain concept. 

V. CONCLUDING REMARKS 

In this paper, based on approximation operators in FCA 
and covering rough set model, we discuss the uncertain 
concept and its accuracy degree in a formal context and 
present approaches to characterizing the accuracy degree of 
uncertain concept. Based on this paper, we can further probe 
the applications of FCA in the fields such as pattern 
recognition, data analysis and decision making. Furthermore, 
the uncertainty based on other covering rough approximation 
operators is an important issue to be addressed. 
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