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Abstract—The problem of multi-sensors information fusion is 
studied in time-frequency domain, and a new optimal criteria 
weighted by scalars for unify multi-sensor systems is presented. 
Wavelet transform is introduced in multi-scale signal filtering, 
the approximate component and details are both updated. The 
local sensor estimate is fused via an optimal algorithm weighted 
by scalars, then reconstruct at the finest scale. The method 
proposed: (1) “complete” multi-scale filtering for unify multi-
sensor system, estimation performance is greatly enhanced; (2) 
distributed fusion weighted by scalars, only requires the 
computation of scalar weights, avoids the computation of matrix 
weights, the computational burden can obviously be reduced; (3) 
the simulation also shows it outperforms optimal fusion filter 
weighted by scalars and centralized multi-sensor fusion. 

Keywords- wavelet transform; multi-scale filtering; optimal 
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I. INTRODUCTION 

In the recent 20 years, multi-sensor information fusion has 
becoming an important research area[13,14]. There are many 
effective method: weighted average estimate, Bayes estimate, 
Kalman filter(centralized or distributed), maximum likelihood 
estimate, neural network fusion. Weighted average estimate is 
the most simple and intuitive fusion method. Carlson[1] 
presents the famous federated square root filter weighted by 
matrices. Kim[2] give the multi-sensor optimal information 
fusion estimate in the maximum likelihood sense, which also 
needs computation of matrix weights. In[3][4] the optimal 
information fusion criterion weighted by scalars is derived. 
In[5] the information fusion criterions weighted by matrices 
and weighted by scalar are discussed, their precision and 
computational burdens are compared. The fusion criterion 
weighted by scalar is a better choice in engineering application 
for its computational advantages. 

The former information fusion are mostly derived from 
time-domain, the abundant frequency information contained in 
signal are not utilized during the processing. Recently, the 
introduction wavelet transform started multi-scale signal 
processing. Chou and Willsyk[6] started pioneer research on 
modeling and estimation of multi-scale stochastic processes 
using wavelet transforms, a dynamic multi-scale model and 
algorithm was built. The correlative research 
involves[7,8,9,10],Hong proposed an optimal and dynamic 

multi-scale distributed filtering algorithm for multiresolutional 
sensory information. For uniform resolution multi-sensor 
systems, it is invalid. And during the multi-scale filtering, the 
details which also contains noise ,are not updated.  

In the paper, multi-sensor information fusion is studied in 
the view of application needs. A wavelet-based optimal fusion 
filter weighted by scalars is proposed.  In section 2 the 
necessity of details filtering in multi-scale signal filtering is 
discussed. The optimal fusion filter weighted by scalars in 
time domain and wavelet domain are presented respectively in 
section 3 and section 4. An simulation is given in section 5 to 
illustrate the algorithm. Finally, section 6 concludes the paper. 

II. OPTIMAL FUSION FILTER WEIGHTED BY SCALARS IN 

TIME DOMAIN 

Consider the discrete-time stochastic system with multiple 
sensors: 

( 1) ( ) ( )x k Ax k Bw k                         (1) 

( ) ( ) ( )j j jz k C x k v k 
                           (2) 

where j =1,2… s  denotes sensor index, k  denotes 

measured sequence index. ( ) ~ (0, )w k N q , ( ) ~ (0, )j jv k N r ,The 

initial value of (0)x is a random vector  with  a mean and  a 

variance matrix given by: 0{ (0 )}E x x , 

0 0 0{ ( (0) )( (0) ) }TE x x x x P   ,it is assumed 

that )0(x , ( )w k ,
( )jv k

are independent of each other. 

We assume all local sensors are faultless. Based on the 

local optimal Kalman estimation 
ˆ ( | )jx k k

, j =1,2… s , 
multi-sensor information optimal(i.e. linear minimum variance)  
fusion with scalar weights: 

1 1ˆ ˆ ˆ( | ) ( ) ( | ) ... ( ) ( | )s sx k k a k x k k a k x k k      (3) 

Where satisfied: 

(a)Unbiasedness, namely
ˆ ˆ( | ) ( )Ex k k Ex k  

(b)Optimality,namely, to find the optimal scalar 
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weights
( )ja k

,to minimize the performance index 
( | )J trP k k , i.e.

ˆ ( | ) m in{ ( | )}trP k k trP k k , 

where ( | )P k k denotes the variance of arbitrary fusion filter 

with scalar weights,
ˆ ( | )P k k denotes the variance of the 

optimal fusion filter with scalar weights, symbol tr  denotes 
the trace of a matrix. 

   The optimal fusion scalar weights 
( )ja k

 computation is 
given as follows: 

1

1( ) T
e

e e
a k








                                  (4) 

where
( ( | ))ijtrP k k 

, , 1, 2,...,i j l ,is an l l  
positive definite matrix with 
ˆ ˆ( | ) ( | )jj jP k k P k k

. 1( ) [ ( ), ..., ( )]T
sa k a k a k

, 
[1, ...,1]Te   are both l -dimensional  vectors. The 

corresponding variance of fusion estimate 
ˆ( | )x k k is 

computed by:   

, 1

ˆ ˆ( | ) ( ) ( ) ( | )
s

i j ij
i j

P k k a k a k P k k


 
          (5) 

and we have 
ˆ ˆ( | ) ( | )j jt r P k k t r P k k

, 
ˆ ( | )i jP k k

is the cross-covariance matrix of filtering errors 

between the local estimate ˆ ( | )ix k k and ˆ ( | )jx k k , suppose 

the sensors are independent, we have 
ˆ ( | ) 0ijP k k 

. 

III. WAVELET-BASED MULTI-SCALE SIGNAL FILTERING 

The idea of multi-scale signal filtering[6,7]: decomposing 
the signal measured at the finest scale onto an orthonormal 
basis via wavelet transform, multi-scale signal can be obtained. 
Updating the multi-scale signal , then an optimal estimate at 
the finest scale level is generated by reconstruction.  

Consider a finite sequence of n-dimensional random 
vectors at resolution level N with a length of a data block: 

( ) [ ( 1), ( 2), , ( )]T T T T
N N N N NX k x kM x kM x kM M           (6) 

Where the length
12  N

NM , Nk
denotes for k th data 

block at resolunion level N .In order to change )( NkX  to 
the form required by the wavelet transform, we introduce a 
linear transfromatino. For instance, for a sequence with two  

two-dimensional vectors 11 12 21 22( ) [( , ), ( , )]T
NX k x x x x ,the 

transformation NL
can be difined such that: 

1 1 2 1 1 2 2 2

1 0 0 0

0 0 1 0
[ , , , ] ( ) ( )

0 1 0 0

0 0 0 1

T
N N Nx x x x L X k X k

 
 
  
 
 
                (7) 

Wavelet-based decomposition from level N to level ( N -
1) can be derived in terms of operators: 

)(},,{)( 1111 NNNN
T
NNV kXLHHdiagLkX            (8) 

)(},,{)( 1111 NNNN
T
NND kXLGGdiagLkX          (9) 

Where subscript V denotes the approximate component at 

level ( N -1) and D denotes the details at level  ( N -

1). 1NH  and 1NG  are scaling and wavelet operators 

mapping from level N  to level( N -1). Linear 

transformation NL
 and 1NL

 are introduced to change 
)( NkX

and
)( 1NkX

to the form required by the wavelet 
transform[2]. The inverse transformation form: 

1 1 1 1

1 1 1 1

( ) { , , } ( )

{ , , } ( )

T T T
N N N N N V N

T T T
N N N N D N

X k L diag H H L X k

L diag G G L X k

   

   






         (10) 

The multi-scale discrete wavelet transform from level N  

to level i  is illustrated in Fig.1.  

The multi-scale decomposition can be obtained by: 

)()}(,),({

(

)(

)(

)1

NNii
T
i

ND

iD

iV

kXLkTkTdiagL

kX

kX

kX


























             (11) 

where
( )iT k

is an orthogonal matrix: 





































1

1

1

)(

N

i

Nj
ji

i

Nj
j

i

G

HG

H

kT



 

The inverse transform of Equ.(11): 

1

( )

( )
( ) { ( ), , ( )}

( )

V i

D ii T T T
N N i i i

D N

X k

X k
X k L diag T k T k L

X k 

 
 
 
 
 
 




               (12) 

The superscript i  denotes the reconstruction from level i  
to the finest level N. 

Assume )( NkX  a white noise contaminated signal. 
Through multi-scale transform, we get an orthogonal 

projection )( iV kX  and )( 1ND kX , )( 2ND kX ,…, )( iD kX . 
Meanwhile, the white noise is decomposed at different levels. 
Due to its uncorrelated and normal distribution, white noise 

affects the signal in the entire ~t w domain, the noise at 
arbitrary level has the same statistical characteristic of the 
original signal[11].  

The decomposed multi-scale signal contains both useful 
signal and noise component. In [7,10] only approximate 
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component )( iV kX  is updated, but the details are not. Hence, 
the multi-scale filtering is incomplete. Especially in the non-
stationary environment or the noise has large amplitude, the 
noise is the main component of details, estimation accuracy is 
greatly influenced by the filtering of details. In the following 
part, we give proof that details filtering can improve the whole 
performance of estimation. 

Firstly, for A given system described by Equ.(1) and 
Equ.(2) at resolution level N , the block length is 

12  N
NM , we use data block to present the system as: 

( 1) ( ) ( ) ( ) ( )N N N N NX k A k X k B k W k                (13) 

( ) ( ) ( ) ( )j N j N N j NZ k C k X k V k               (14) 

where: 

( ) { , , }NA k d i a g A A                         (15) 

( ) { , , }j N j jC k d i a g C C               (16) 

11 12 1

21 22 2

1 2

0 0

0 0
( )

0 0

N

N

N N N N

M

M

N

M M M M

b b b

b b b
B k

b b b

 
 
         
  

 

 


                 (17) 

and 
N NM v M v

uvb A B   

( ) ~ (0, ( ))N NW k N Q k   ( ) { , , }NQ k diag q q       (18) 

( ) ~ (0, ( ))j N j NV k N R k  ( ) { , , }j N jN jNR k diag r r     (19) 

Suppose the system Equ.(13) and Equ.(14) is mapped from 
level N to level 1N  .  

Theorem 1  Assume that )( NkX  is interfered by white 

noise )( NkW , )( 1NV kX  and )( 1ND kX  derived from Equ.(8,9) 

are updated by Kalman filter, )(ˆ
1NV kX  and )(ˆ

1ND kX  are the 

filter estimate, the reconstruction )(ˆ
NkX from Equ.(10) is 

optimal in the linear minimum variance(LMV) sense. 

Proof:  

Assume 

},,{ 111
T
N

T
NN HHdiagTH     },,{ 111

T
N

T
NN GGdiagTG        (20) 

equation(10)can be rewritten: 

1 1 1 1 1 1( ) ( ) ( )T T T T
N N N N V N N N N D NX k L TH L X k L TG L X k      

  
      (21) 

1 1 1 1 1

1 1 1 1 1

ˆ ˆ( ) {[ ( ) ( )][ ( ) ( )] }

( )

( )

T
N N N N N

T T T
N N N V N N N N

T T T
N N N D N N N N

P k E X k X k X k X k

L TH L P k L TH L

L TG L P k L TG L

    

    

  



                    (22) 

where  

})]()(ˆ)][()(ˆ{[)( 11111
T

NVNVNVNVNV kXkXkXkXEkP          (23) 

})]()(ˆ)][()(ˆ{[)( 11111
T

NDNDNDNDND kXkXkXkXEkP         (24) 

As Kalman filter is optimal based on the linear minimum 

variance sense, )( 1NV kP  and )( 1ND kP  is the minimum variance, 
)( NkP  can be linear represented by )( 1NV kP  and

)( 1ND kP
, hence, 

)( NkP
is optimal in the linear minimum variance sense. 

In [7] the details )( 1ND kP  is not updated , seen from 
Therom 1, the result is not optimal in LMV sense. In Part 
4 ,we presented a wavelet-based algorithm, which update 

)( 1NV kP  and )( 1ND kP  for each local sensor. 

IV. WAVELET-BASED OPTIMAL FUSION FILTER WEIGHTED 

BY SCALARS 

Consider a discrete-time system with multiple sensors 

described by Equ.(13,14). j =1,2… s denotes the sensor index, 

k denotes data block index. Fig.2 is the flow chart for 

wavelet-based optimal fusion algorithm, N and i denotes 
different resolution level. 

  
FIGURE Ⅰ.MULTI-SCALE TRANSFORM. 

 
FIGURE Ⅱ.WAVELET-BASED OPTIMAL FUSION ALGORITHM. 

The multi-scale signal filtering includes approximate 
component and detailed component, the distributed filtering 
estimate are fused by scalars in optimal fusion center, the 
scalars are computed from the variance of arbitrary local 
estimate. The output of fusion center is an optimal multi-scale 
state estimate, then, the optimal estimate at the finest scale can 
be get via inverse wavelet transform. 

In summary, the algorithm can be implemented by going 
through the following procedure: 

(1)Wavelet &decomposition layer selection , the wavelet 
with a good time domain localization property, such as Haar 
wavelet, is preferred; i =1, 3 ~ 5N  is enough; 

(2)Multi-scale decomposition, ( )j NX k and ( )j NZ k  is 

decomposed from finer scale to coarser scale using Equ.(11), 
such as ( )j NX k is decomposed to approximate ( )jV iX k  and 

detailed 
1( )jD NX k 

,
2( )jD NX k 

,…, ( )jD iX k ,(j=1,2,…s); 

(3)Kalman filter update at different scale,  local output 

1
ˆ ( )jD NX k 

, 
2

ˆ ( )jD NX k 
,…, ˆ ( )jD iX k  and ˆ ( )jV iX k ,(j=1,2,…s); 

(4)Compute the saclar ( )D ia k  of ˆ ( )D iX k  from Equ.(4) 
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and 
1̂

ˆ( ), ... ( )D i sD iP k P k ; 

(5) Fusion by scalars from Equ.(3) ,(5), ˆ ( )D iX k and 

ˆ ( )D iP k can be get; 

(6)Repeat step(4)-(6), compute fusion 
estimate

1 1
ˆ ˆ( ) , . . . , ( )D i D NX k X k 

 and ˆ ( )V iX k ; 

(7)Inverse wavelet transform from Equ.(12), the optimal 
fusion estimate ˆ ( )NX k  is obtained 

Remark: As the filter proposed is a information fusion 
algorithm in wavelet domain, the abundant frequency 
information is complete utilized. Especially, we testified the 
necessity of details updating. Hence, it should have better 
performance than the fusion filter in time domain. Meanwhile, 
the algorithm is weighted by scalars, it avoids the computation 
of matrix weight, and avoids the inverses of higher 
dimensional matrices, so that the computation burden may be 
reduced. 

V. SIMULATION 

As an example, the simulation of two-sensor information 
fusion is presented. The sensors are assumed to be 
independent. The target is take a constant velocity movement, 
initial state (0) [0 ,1 / ]x m m s , sample period T=1s, 150 
sampling data is taken. Q=1, R1=9,R2=16.“New” denotes 
wavelet-based optimal fusion algorithm proposed in the paper, 
“Old” denotes the optimal fusion filter weighted by scalars in 
time domain[5], “Cen” denotes centralized multi-sensor fusion 
algorithm(also well known as measurement fusion 
method[12]). We compared each sensor and the fusion result 
with three different algorithm respectively.Table 1 is the 
position error std comparison, and table 2 is the velocity error 
std comparison. 100 Monte-Carlo runs.  

TABLE Ⅰ.POSITION ERROR STD (UNIT: M). 

 Sensor 1 Sensor 2 fusion 

Old  2.1736 2.7653 1.8486 

New 1.9878 2.5543 1.5982 

Cen   1.8123 

TABLEⅡ. VELOCITY ERROR STD (UNIT: M/S). 

 Sensor 1 Sensor 2 fusion 

Old 1.3808 1.5167 1.3212 

New 1.3676 1.5085 1.1197 

Cen   1.2947 

Analysis: 1)multi-sensor optimal fusion weighted by 
scalars improves the local estimate precision; 2) In time-
domain, the precision of optimal fusion filter weighted by 
scalars is inferior to that of centralized fusion(weighted by 
matrix); 3)wavelet-based optimal fusion filter weighted by 
scalars outperforms the former two algorithms, the accuracy of 
position and velocity are both enhanced, especially the new 
algorithm has better performance than centralized fusion one. 

VI. CONCLUSION 

A wavelet-based optimal information fusion criterion 
weighted by scalar is proposed. The algorithm improves the 
performance of multisensor state estimation with less 
computational burden. The simulation also shows its 
effectiveness. It can be applied in estimate application. 
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