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Abstract—In this paper, we give some applications of a Newton-
type method for constrained nonsmooth equations. The method is
proposed by F.Facchinei and etc, which use linear programming
model for the solution of constrained nonsmooth equations. The
applications of the method including in solving constrained
maximum equations and generalized complementarity problems.
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I. INTRODUCTION
We consider the constrained nonsmooth equations

F(x)=0, xeQ, )]

where Q c R" is a nonempty and closed set and
F:R" — R™is locally Lipschitz function. The solution set of
(1) is denoted by X and assumed to be nonempty, that is

X ={xe QF(x) =0} ®.

Numerical analysis methods for solving (1) have been
studied by many researchers, such as [1-7]. In [1], they
consider a new Newton-type methods, when given a point

x¥ € Q, under a mild assumption, x*** is a feasible solution
of the following linear programming problem

min y
X,y

[FO)+ () x = %) < 7| F ()

: )

[e=x | <AF e

XeQ, y>0,
where G(x*)is an element of a subdifferential.
To describe the scheme of the method, for given
se Qandy >0, define the set

P(s.7) = k< AJF(s) + G(s) -9 < AP x| < AF )

where |||| is an arbitrary but fixed norm in R"orR™. Now,

as in [1], we give the scheme of the Newton-type method for
).

Method 1.
Step 0: Choose x° e Qand I' > 0. Let k :=0.
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Step 1: If x* € X ,then stop.
Step 2: Solve the x*** € P(x*,T).
Step 3: Set k =k +1.go to Step 1.

In the following of the paper, we give the applications of
the Method 1 in section 2. In section 3, some discussions of
the method are also given.

1. APPLICATIONS OF THE METHOD

A. Application in Solving Constrained Maximum Equations

In this section, we consider the constrained maximum
equations

max f,;(x) =0
jedy

®)

max f,;(x) =0, X €,
Jedy

where Q < R" is a nonempty and closed set, f R" >R
are contiously differentiable functions, jeJ;, i=1...,n,

J, are finite index sets. Obviously, (3) is a system of
nonsmooth equations. For simplicity, we denote

fi(x)znjla}xfij(x), xeQ i=1...,n (4)
F(X) = (f,(x),..., f,(x))", xeQ (5)
300={ie3|f00=f,00} X€EQs i=1..,n. (6)

Thus, (3) can be briefly written as
F(x)=0, xeQ. ()

Now, we introduce a new kind of the subdifferential for
F as in [2]. We denote it by &, F (x) , which is given as

0.F() = {8, 00, VE, OV i, € 1,0, by € 3,00} (8)
Based on Method 1, we give a new method for solving (3).
Method 2.

Step 0: Choose x° e Qand I" > 0. Let k :=0.

Step 1: If x* € X , then stop.



Step 2: Solve the following linear programming problem to
k+1
get X

miny
[F o)+ GO )= x| < o F (x4)
: (9)

XEQ, 7/201

=< AF o

where G(x*) e 6,F(x*), thatis x*** e p(x*,T).
Step 3: Set k =k +1, go to Step 1.

Let X" e X, g(x",6) = {xe R"
arbitrary constant, dist[s, X]::ians—xH denote the distance
xeX

X_X*HS(;}, where § >0 is

ofStoX.

Proposition 1. If F is locally Lipschitz continuous
around X*, that is, there exits L > O such that

[F(s)] < Ldist[s, X ]
holds for all s e g(x*,8) N Q.

Because Method 2 is not well-defined if P(x*,T") is empty,

to avoid this and prove the local quadratic convergence,
according to [1], we give the following similar assumptions.

Assumption 1. There exists| > 0such that
dist[s, X |<I|F (s)|
holds for all s € g(x*,8) N Q.
Assumption 2. There exists " > 1such that
y(s)<T
holds for all se g(x*,8)nQ , where x* was substituted
by Siny(s), y(s) is the optimal value of (9).
Assumtion 3. There exists ¢ > 0such that
wep(s,a)= {w € Q‘HW— §| < @, ||F(s) + G(s)(w—9)|| < az}
implies
|IF(w)| < aa?
forall se (B(x",0)nQ)\ X and all ¢ <0,5]-

To get the convergence of the Method 2, we need to give
the following two lemma firstly.

Lemma 1. Let Assumption 2 be satisfied and define the set

P(s.) = ke AF () + GE)x - 9)| < TF O x| < TF o)
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Then, for anys e g(x*,8) nQ, P(s,I) is nonempty. And
we know that

|F(s)+G(s)(x—s)| < TL7dist[s, X |*»
|x - < T'Ldists, X]
holds for all x € P(s,T) -
Lemma 2. Let Assumptions 1-3 be satisfied. Then, there
are ¢ >0 and ¢ > 0 such that, foranys e g(x*,5) " Q.
dist[x, X]< cdistfs, X < %dist[s, X]
holds for all x € P(s,T).

The proof of lemma 1 and lemma 2, we can see in [3].

Based on the above lemmas, we can get the convergence
theorem of Method 2.

Theorem 1. Let Assumptions 1-3 be satisfied for
some o6>0 and let I'> I be given.
ifx° e B(x*,r.) N Q and there is r. €(0,5], we have

(i) Method 2 is well-defined (that is, P(x*,I") # ® in
step 2 for allk ).

Then,

iy 1f x°...,x* are
then x*** € B(x*, 8) N Q.

generated by Method 2,

(iii) Any {xk }generated by Method 2 either stops with a
solution or converges locally quadratically to some solution of
(@).

Proof We can get (i) from Lemma 1. Now we prove (ii).

By Method 1 is well-defined for any x° e Q, with & according
to

0<e< %min{ﬁ,&F’lL’l,a’ll’1f’2L’2}

We can choose I such that

8 .
1+2TL

We first prove by induction that
xk e B(x",e) N Q

O<r<

(10)
and

xt e P(x*,T) (11)
are holds for allk e N .

For k=0 , due to x°epB(x,rNNnQ , r<e ,

so x"e B(x',e)nQ .Moreover, since r<g<d due

to 0<g<1min{6 oLt alllf"sz} . Assumption 2
<3 , ,

implies xleP(XO,F) . Suppose (10) and (11) hold



fork =0,...,v. To prove x""* € B(x*,&) N Q, we first note
that

(12)

X' xY

Xv+1 _ XxH <

x“—x”H+

< -x|+3
j=0

From (10) and (11) for k =0,...,vand Lemma 1, we have

)
[xi = xJ] <TLdist[x’, X ] (13)
for j=0,...,v. By (10), (11) and Lemma 2, we get

dist[xj,x]ggdist[xw,x]g...g(gj"dist[xo,x] (14)

for j =0,...,v. Therefore, from (12) and (13), we obtain

e T oY
X" —x’| < v+ TLdistx®, X [y S| SreTLr2s@earyrse
j=0

We have x"*' € B(x",e)nQ . This and Assumption 2
imply  x"2 e P(x**,T") Hence, (10) and (11) hold
fork =v+1and fork e N. By (10), (11) and Lemma 2, we
get

dist[x**, X ] < cdist[x*, x | s%dist[xk,x] (15)

for k e N . Then, we get

limdistx*, | =0 (16)
for j,k e Nandk > j . From Lemma 1, (11) and Lemma
2, we have
¥ =x| SiHX”l —x'HsFLdist[kaE(%) <orudistx!, x]’ n

Due to (16), we know that {zk}is a Cauchy sequence (by
the closeness) converges to some X € X . Finally, we prove
the convergence rate. The use of (17) for K +1 instead
of jandk + j instead of K together with (15) leads to

forany k, j e N, j >1. The limit for j — oo, we obtain

kHT ket (18)

< 2ridist[x**, X |< 2crLdist[x*, X |

[7=x+) < 2crLdist[x*, X [ < 2crL|R - x"Hz-

We finished the proof.

B. Application In Solving Generalized Complementarity
Problem
In this section, we consider the constrained generalized
complementarity problem, which is to find x e Q, such that

F(x)20 G(x)>0 F(X)"G(x)=0, xeQ, (19)

F=(F,F,,..F)",
F:R">R(i=1.,n) and

where G =(G,,G,,..G,)",

G :R">R,(i=1..,n) are
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continuously differentiable functions, o = R"iS a nonempty
and closed set.
One of the most popular approaches for solving (19) is to

reformulate it as a system of nonlinear equations. For any
nonlinear complementarity problem (NCP) function ¢, (19) is

equivalent to the following equation

H(X) = [p(F,(x), G, (X)), 9(F, (x), G, (x))] =0-

Here, we list some popular used
complementarity problem (NCP) functions as in [4].

(20)

nonlinear

#,(a,b) = min{a, b},
p,(a,b)=+va*+b> —(a+b),
»;(a,b)=(a-b)" —a:

¢,(a,b)=[(a,b)|, —(a+b) (P>1):

ps(@b)=o(d’ +)o)") +@-0)a-b] —(a+b) (O€ [01] p>1),

py(a.b) = [Va? +b7 ~(@+b)F +al(ab). |
Obviously, all the ¢, (a,b) (i =1,...,6) is strongly semismooth

(>0)-

functions. If we choose @y in (20), we have

H(x) =[H,(x) H,(x)]" =0, (21)

where
H; (X) = 95 (F; (%), G; (X))

= \/[\/FiZ(X) +G7(X) = (Fi(x) + G, ()] + al(F ()G (x) . 1*
(i=1..,n) (a>0).

Let oH(x) denote Clarke’s generalized Jacobian
of Hatx e Q. gH(x)is a matrix which element is composed
by everyoH, (x) (i =1,...,n). According to [4], we know that
for any ie{l,2..,n} and veoH,(x) , there exist
p and y that v =4 (x)+/G;(x) .
where 4 and y satisfy

scalars such

() gy >0 if 1,0 =0;

(i) p2o. y=01if 4 ,=02and F,(x)=0, G,(x)>0,
(iii) p=0. y 20 if y (x)=0and (x>0, G (x)=0,
(iv) gy=oand gy 20 if H,(x)=0, F,(x)=G,;(x) =0.
Now, we give the following method for (19).

Method 3.

Step 0: Choose x° e Qand I > 0. Let k :=0.

Step 1: If x* e X ,then stop.



Step 2: Solve the following linear programming problem to
k+1
get X

min y
X7

[H O+ GO ) ox=x)| < 7| H(x")

< e

, 720,
where G(x*) e H(x*).that is x*** e P(x*,I).
Step 3: Set k =k +1.go to Step 1.

Similar to the Section of 2.1, we give the following
convergence theorem.

Theorem2. Let Assumptions 1-3 be satisfied for

somes > 0and T > I be given. Then, ifx° e B(x*,1.) N Q for
r. € (0,5], then we have

(i) Method 3 is well-defined (that is, P(x*,T") = @ in step 2
forallk ).

(i) For any X°,...,x* are generated by Method 3,
thenx**' € B(x*,5) N Q.

(iif) Any sequence {x* |generated by Method 3 either stops
with a solution or converges locally quadratically to some

solution of (21).
I1l.  DISCUSSION

In this paper, we have give some applications of the
Method 1, there are so many models can be solved by Method
1. We will give further study of this method in the future.
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