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Abstract—In this paper, we give some applications of a Newton-
type method for constrained nonsmooth equations. The method is 
proposed by F.Facchinei and etc, which use linear programming 
model for the solution of constrained nonsmooth equations. The 
applications of the method including in solving constrained 
maximum equations and generalized complementarity problems. 
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I. INTRODUCTION 

We consider the constrained nonsmooth equations 

0)( xF ,  x ,                  (1) 

where nR is a nonempty and closed set and 
mn RRF : is locally Lipschitz function. The solution set of 

(1) is denoted by X and assumed to be nonempty, that is 

   0)(xFxX . 

Numerical analysis methods for solving (1) have been 
studied by many researchers, such as [1-7]. In [1], they 
consider a new Newton-type methods, when given a point 

kx , under a mild assumption, 1kx  is a feasible solution 
of the following linear programming problem 


,

min
x

 

)())(()( kkkk xFxxxGxF  , 

)( kk xFxx  ,                 (2) 

x , 0 , 

where )( kxG is an element of a subdifferential.  

To describe the scheme of the method, for given 
s and 0 , define the set 

 .)(,)())(()(:),(
2

sFsxsFsxsGsFxs   . 

where  is an arbitrary but fixed norm in nR or mR . Now, 

as in [1], we give the scheme of the Newton-type method for 
(1). 

Method 1. 

Step 0: Choose 0x and .0  Let .0:k  

Step 1: If Xxk  ,then stop. 

Step 2: Solve the ).,(1  kk xx  

Step 3: Set .1:  kk go to Step 1. 

In the following of the paper, we give the applications of 
the Method 1 in section 2. In section 3, some discussions of 
the method are also given. 

II. APPLICATIONS OF THE METHOD 

A. Application in Solving Constrained Maximum Equations 

In this section, we consider the constrained maximum 
equations 

0)(max 1
1




xf j
Jj

,                         

                                (3) 

0)(max 


xfnj
Jj n

, x , 

where nR  is a nonempty and closed set, RRf n
ij :  

are contiously differentiable functions, iJj , ni ,,1 , 

iJ  are finite index sets. Obviously, (3) is a system of 

nonsmooth equations. For simplicity, we denote 

),(max)( xfxf ij
Jj

i
i

    x  ni ,,1              (4) 

,))(,),(()( 1
T

n xfxfxF   x                        (5) 

 ,)()()( xfxfJjxJ iijii   x ， ni ,,1 .            (6) 

Thus, (3) can be briefly written as 

,0)( xF    x .                                               (7) 

Now, we introduce a new kind of the subdifferential for 
F as in [2]. We denote it by )(xF , which is given as 

  )(,),()(,),()( 111 1
xJjxJjxfxfxF nn

T
njj n

 .       (8) 

Based on Method 1, we give a new method for solving (3). 

Method 2. 

Step 0: Choose 0x and .0  Let .0:k  

Step 1: If Xxk  , then stop. 
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Step 2: Solve the following linear programming problem to 

get 1kx  


,

min
x

 

)())(()( kkkk xFxxxGxF  , 

)( kk xFxx  ,                 (9) 

x , 0 , 

where )()( kk xFxG  , that is ).,(1  kk xx  

Step 3: Set ,1:  kk go to Step 1. 

Let Xx  ,     xxRxx n:),( , where 0 is 

arbitrary constant,   xsXsdist
Xx




inf:, denote the distance 

of s to X . 

Proposition 1.  If F is locally Lipschitz continuous 
around x , that is, there exits 0L such that 

 XsdistLsF ,.)(   

holds for all   ),(  xs . 

Because Method 2 is not well-defined if ),(  kx is empty, 
to avoid this and prove the local quadratic convergence, 
according to [1], we give the following similar assumptions.  

Assumption 1.  There exists 0l such that  

  )(, sFlXsdist   

holds for all   ),(  xs . 

Assumption 2.  There exists 1


such that 



)(s  

holds for all   ),(  xs , where kx was substituted 
by s in )(s , )(s is the optimal value of (9). 

Assumtion 3.  There exists 0ˆ  such that 

 2))(()(,:),(   swsGsFswwsw  

implies 

2ˆ)( wF  

for all Xxs \)),((    and all   ,0 . 

To get the convergence of the Method 2, we need to give 
the following two lemma firstly. 

Lemma 1. Let Assumption 2 be satisfied and define the set 

 .)(,)())(()(:),(
2

sFsxsFsxsGsFxs   

Then, for any   ),(  xs , ),(  s is nonempty. And 
we know that  

 22 ,))(()( XsdistLsxsGsF  , 

 XsLdistsx ,  

holds for all ),(  sx . 

Lemma 2.  Let Assumptions 1-3 be satisfied. Then, there 
are 0  and 0c  such that, for any   ),(  xs , 

     XsdistXsdistcXxdist ,
2

1
,., 2   

holds for all ),(  sx . 

The proof of lemma 1 and lemma 2, we can see in [3]. 

Based on the above lemmas, we can get the convergence 
theorem of Method 2. 

Theorem 1.  Let Assumptions 1-3 be satisfied for 

some 0 and let


 be given. Then, 

if   ),(0 rxx   and there is  ,0r , we have 

(i) Method 2 is well-defined (that is,  ),( kx in 
step 2 for all k ). 

(ii) If kxx ,,0  are generated by Method 2, 
then  ),(1  xxk . 

(iii) Any  kx generated by Method 2 either stops with a 
solution or converges locally quadratically to some solution of 
(7). 

Proof   We can get (i) from Lemma 1. Now we prove (ii).  
By Method 1 is well-defined for any 0x , with according 
to 









  221111 ˆ,,min
2

1
0 LlL 

. 

We can choose r such that  

L
r




21
0

 . 

We first prove by induction that 

  ),(  xx k                           (10) 

and 

),(1  kk xx                                 (11) 

are holds for all Nk  .  

For 0k , due to   ),(0 rxx  , r , 

so   ),(0  xx .Moreover, since  r due 

to









  221111 ˆ,,min
2

1
0 LlL 

, Assumption 2 

implies ),( 01  xx . Suppose (10) and (11) hold 
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for vk ,,0  . To prove   ),(1  xxv , we first note 
that  




 
v

j

jjvvvv xxxxxxxxxx
0

1011 .    (12) 

From (10) and (11) for vk ,,0  and Lemma 1, we have  

 XxLdistxx jjj ,1                                    (13) 

for vj ,,0  . By (10),  (11) and Lemma 2, we get 

     XxdistXxdistXxdist
j

jj ,
2

1
,

2

1
, 01 






          (14) 

for vj ,,0  . Therefore, from  (12) and (13), we obtain 

  .)21(2..
2

1
,

0

01 





 



 rLrLrXxLdistrxx
jv

j

v  

We have   ),(1  xxv . This and Assumption 2 
imply ),( 12   vv xx . Hence, (10) and (11) hold 
for 1 vk and for Nk  . By (10),  (11) and Lemma 2,  we 
get 

     XxdistXxdistcXxdist kkk ,
2

1
,.,

21         (15) 

for Nk  . Then, we get  

  0,lim 


Xxdist k

k
                                              (16) 

for Nkj , and jk   . From Lemma 1, (11) and Lemma 
2, we have 

     XxLdistXxLdistxxxx j
ik

ji

j
k

ji

iijk ,2
2

1
,

11
1 






 










.        (17) 

Due to (16), we know that  kz is a Cauchy sequence (by 
the closeness) converges to some Xxˆ . Finally, we prove 
the convergence rate. The use of (17) for 1k  instead 
of j and jk  instead of k together with (15) leads to 

   211 ,2,2 XxLdistcXxLdistxx kkkjk          (18) 

for any Njk , , 1j . The limit for j , we obtain 

  221 ˆ2,2ˆ kkk xxLcXxLdistcxx   . 

We finished the proof. 

B. Application In Solving Generalized Complementarity 
Problem 

In this section, we consider the constrained generalized 
complementarity problem,  which is to find x , such that  

  0xF     0xG    0)()( xGxF T ,  x ,             (19) 

where ,),...,,( 21
T

nFFFF  ,),...,,( 21
T

nGGGG 

 niRRF n
i ,...,1:  and  niRRG n

i ,...,1,:  are 

continuously differentiable functions, nR is a nonempty 
and closed set. 

One of the most popular approaches for solving (19) is to 
reformulate it as a system of nonlinear equations. For any 
nonlinear complementarity problem (NCP) function , (19) is 
equivalent to the following equation 

  0))(),(()),...,(),(()( 11  T
nn xGxFxGxFxH  .          (20) 

Here, we list some popular used nonlinear 
complementarity problem (NCP)  functions as in [4]. 

 baba ,min),(1  , 

)(),( 22
2 bababa  , 

ababa  )(),(3 , 

)(),(),(4 bababa
p

   )1( p , 

)()1()(),(5 babababa p ppp        )1,1,0(  p ， 

2222
6 ])[()]([),(  abbababa      )0(  . 

Obviously, all the ),( bai )6,...,1( i is strongly semismooth 

functions. If we choose 6 in (20), we have  

0)](),...,(),...,([)( 1  T
ni xHxHxHxH ,          (21) 

where  

))(),(()( 6 xGxFxH iii 
2222 ]))()([())]()(()()([  xGxFxGxFxGxF iiiiii   

),...,1( ni  )0(  . 

Let )(xH denote Clarke’s generalized Jacobian 

of H at x . )(xH is a matrix which element is composed 

by every )(xHi ),...,1( ni  . According to [4], we know that 

for any  ni ,..,2,1 and )(xHv i , there exist 

scalars  and  such that )()( '' xGxFv ii   , 

where  and satisfy 

(i) 0  if 0)( xHi
; 

(ii) .0  0  if 0)( xH i
 and ,0)( xFi ,0)( xGi

 

(iii) .0  0  if 0)( xH i
 and ,0)( xFi ,0)( xGi

 

(iv) 0  and 0   if 0)( xH i
, .0)()(  xGxF ii

 

Now, we give the following method for (19). 

Method 3. 

Step 0:  Choose 0x and .0  Let .0:k  

Step 1: If Xx k  ,then stop. 
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Step 2: Solve the following linear programming problem to 

get 1kx  


,

min
x

 

)())(()( kkkk xHxxxGxH  , 

)( kk xHxx  , 

 , 0 , 

where ).()( kk xHxG  that is ).,(1  kk xx  

Step 3: Set .1:  kk go to Step 1. 

Similar to the Section of 2.1, we give the following 
convergence theorem. 

Theorem2.  Let Assumptions 1-3 be satisfied for 

some 0 and


 be given. Then, if   ),(0 rxx   for 

 ,0r , then we have 

(i) Method 3 is well-defined (that is,  ),( kx in step 2 

for all k ). 

(ii) For any kxx ,,0  are generated by Method 3, 

then  ),(1  xxk . 

(iii) Any sequence kx generated by Method 3 either stops 
with a solution or converges locally quadratically to some 
solution of (21). 

III. DISCUSSION 

In this paper, we have give some applications of the 
Method 1, there are so many models can be solved by Method 
1. We will give further study of this method in the future.  
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