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Abstract—The motion of two bubbles under gravity is 
numerically studied through the lattice Boltzmann method for 
the Eotvos number ranging from 1 to 12. The effects of Eotvos 
number on the bubble coalescence and rising velocity are 
investigated. It has been found that the uppermost bubble 
deforms the most because of the maximum drag.In addition, the 
averaged rising velocity of the bubbles is also studied in this 
work. 
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I. INTRODUCTION 

Bubble motion is one ofthe most common gas-liquid flow 
phenomena and plays an important role in many industrial 
applications, such as cavitation fluid machinery,nucleate 
boiling in reactors and condenser/evaporator[1].The motion of 
bubble under gravity is complex due to bubble deformation, 
coalescence and breakup.Understanding thedynamic 
interaction between bubbles is an important aspect ofthe 
design and operation of many industrial applications. 

A number of investigations of the bubble motion in liquid 
have been conducted in the past [2-5] due to its scientific and 
engineering importance. In recent decades, the lattice 
Boltzmann method (LBM) has proved to be a powerful 
numerical scheme for the simulation of multiphase flow 
which is based on mesoscopicparticle dynamics. Its kinetic 
nature can provide many of the advantagesof molecular 
dynamics [6]. Several kinds of lattice Boltzmann model for 
simulating multiphase fluid have been established and applied 
to the simulations of gas bubbles under gravitysuccessfully. 
These models include potential method proposed by Shan et al. 
[7], color method proposed by Rothman et al. [8], and free 
energy method proposed by Swift et al. [9]and improved 
byZheng et al. [10]. The free energy method [10] was proved 
to be a good tool for the study of two-phase flows with high 
viscosity ratios and high density ratio.As shown by Gupta et al. 
[11] and Yu et al. [12], in comparison with the case of single 
bubble, the motion of multiple bubbles under gravity could be 
much more complex due to hydrodynamic interactions 
between bubbles. Besides, the bubble coalescence and 

break-up could take place occasionally which have great 
effect on the motion of multiple bubbles. However,a detailed 
numerical study of the influence of bubble collision and 
coalescence on the rising velocity has not been undertaken. It 
is important to focus on the fundamental understanding of the 
bubble collision and coalescence when multiple bubbles are 
rising under gravity.To fulfil this task the LBM proposed by 
Zheng et al. [10] is adopted in this work to study the rise 
behavior of multiple bubbles which are initially placed in 
in-line arrangement.This study will evaluate the coalescence 
patternand rising velocity of the bubbleswhich not only 
depend on the computational parameters but also depend on 
the initial arrangements. In addition, the terminal velocity is 
compared with the result of single bubble under the same 
conditions to illustrate the influence of multiple bubbles 
motion. 

II. NUMERICAL METHOD 

The discrete lattice Boltzmann equationsunder external 
forces for the continuity and momentum equations are given 
by, 
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where fi(x, t) is the density distribution function at the ith 
microscopic velocity ei,fi(eq)(x, t) is the equilibrium 
distribution function,Fis the external force(which is gravity in 
this work), ∆t is the time step,τnisthe relaxation time, cs is the 
speed of sound and wi aretheweights related to the D2Q9 
model.  is the order parameter that is responsible for the 
gas-liquid interface.  is the chemical potential, which  is 
defined in the following.The macroscopic variables n and u 
are determined by the distribution function as follows, 
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The variables n and  are defined as 
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whereL and G are the densities of liquid and gas phase, 
respectively. The equilibrium distribution functions fi (eq) are 
defined as 
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According to Zheng et al. [12], the coefficients are defined 
as  

0 1 8

9 15 1 1
, 3

4 4 3 3
A n n A n  

          
          (5) 

The discrete lattice Boltzmann equations for the interface 
capture equation are given by [12], 
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whereqis a constant coefficient, which is determined by, 
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The macroscopic variable, i.e. the order parameter ,  is 
given by, 
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According to Zheng et al. [12], the chemical potential is 
computed using, 

   3 *2 24 4A        
                   (9) 

where*=0.5(L+G), and L and G are the 
densities of the liquid phase and the gas phase, respectively. A 
and  are parameters related to the thickness of the interface 
layer W and the surface tension coefficient ,which are 
expressed as, 
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The equilibrium distribution functions gi(eq) are[12], 
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where thecoefficientsAi, Bi and Ciare defined according to 
the D2Q5 lattice. 

By Chapman–Enskoganalysis, the Navier–Stokes 
equations and an interface evolution equation can be obtained 
byEq. (1) and Eq.(6), 
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whereM is the mobility, given by M 
=q(−0.5)x. The viscosity is =(n−0.5)n/3. 

III. RESULTS AND DISCUSSION 

Threecasesare carried out to validate the present 
computational code. The first is the Laplace law, which is 
given (for the two-dimensional case)by 

p
R


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  (15) 

where p is the pressure jump across the interface,  and R 
is the bubble radius. In this work, the Laplace law is validated 
by calculating the pressure jump while varying the bubble 
radius from R=10 to R=80. Other parameters are fixed 
atL=1000, G=1, =2 and =400. The interface 
layerthickness is set to be W=4 for R<20 and W=5 for R20. 
The relaxation times aren=0.875 and =0.7. The results 
are shown in FigureⅠ, which showsgood agreement between 
the numerical results and the analytical solution of Eq.(15). 

 
FIGUREⅠ. THE VERIFICATION OF THE LAPLACE LAW. 

In this sectionmultiple bubbles motion for both horizontal 
arrangement and vertical arrangement are investigated in 
detail. The parameters are fixed atL=2.6, G=1, =0.01, 
W=4.5, R=20 and =0.5.The computational domain is 
2501500 and stationary walls are applied for all boundaries. 

 
FIGUREⅡ. TIME EVOLUTION OF THE RISING VELOCITY OF TWO 

BUBBLES FOR EO=1. 

FigureⅡ shows the time evolution of the rising velocity 
of two bubbles for Eo=1. The two bubbles are initially placed 
in a vertical orientationseparated by center to center distance 
of 2.5R initially. As shown in the figure, after an initial period 
of evolution the velocity becomes constant which indicates 
that the merged bubble is rising at a constant velocity due to 
the balance between buoyancy and drag forces. For better 
understanding the contours of order parameter which visualize 
the process of bubble collision and coalescence are also 
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shown in FigureⅡ. It’s observed that an oscillation occurs in 
the bubble velocity before the steady state. Obviously, this 
oscillation corresponds to the bubble coalescence process. 
Furthermore, as shown in fig. 3 the terminal velocity is 
smaller than the velocity before the two bubbles collide and 
coalesce. 

 
FIGURE Ⅲ. TIME EVOLUTION OF THE RISING VELOCITY OF TWO 

BUBBLES FOR DIFFERENT EO. 

The effects of the Eotvos number on the evolution of 
bubble velocity are shown in FigureⅢ. It’s observed that as 
the Eotvos number increases the bubble velocity increases and 
the magnitude of oscillation also increases.Moreover, it has 
been found that in all cases(1Eo12) the two bubbles would 
collide andcoalesce. The lower bubble always rises at a higher 
speed than the upper one because it is located at the wake 
behind the upper bubble. This leads to a smaller drag force for 
the lower bubble. Since the relative velocity of the bubbles is 
non-zero, the distance between the two bubbles keeps 
decreasing with time. Eventually the bubbles come to contact 
and merge, and soon after form a larger bubble with twice the 
volume as the initial bubble. 

In order to present more insight into the rising process of 
multiple bubbles under gravity, the terminal velocities of two 
bubbles for different Eotvos numbersare shown in FigureⅣ. 
For the purpose of comparison, the results of a single bubble 
under the same conditions are also shown in the figure. It’s 
unexpected that for very low Eotvos numbers such as Eo3, 
the terminal velocities of two bubbles are a little larger than 
those of a single bubble, as can be seen in Figure 4. The 
reason is not clear.However, forhigh Eotvos numberssuch as 
Eo>6 the terminal velocitiesare similar for all cases, indicating 
that the influence of the wall boundaries on the terminal 
velocity is insignificant. Moreover, the bubble coalescence 
strongly affects the time evolution of bubble velocity, but has 
little influence on the terminal velocity.  

 
FIGURE Ⅳ. THE TERMINAL RISING VELOCITY FOR DIFFERENT 

EOTVOS NUMBERS. 

IV. CONCLUSION 

In this work the lattice Boltzmann method is used to 
simulate the motion of two bubbles under gravity.The Laplace 
lawhas beenadopted to validate the present 
method.Thevertical arrangementis taken into account in the 
simulations withEotvos number ranging from 1 to 12. The 
uppermost bubble deforms the most because of the maximum 
drag. In addition, after the coalescence a larger bubble is 
formed eventually.The terminal velocity of two bubbles is a 
little larger than that of one bubble under the same 
conditions.However, the terminal velocity is similar for all 
cases when the Eotvos number is large.  
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