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Abstract--A case study of flow over a body of revolution was done 
in order to understand the variation of flow parameters past the 
projectile and performance of the computational code. The 
pre-processor software ANSYS ICEM-CFD and ANSYS 
FLUENT 14.5 were used to model 155mm M107 artillery 
projectile which has been built in INVENTOR software. The flow 
over projectile was solved as three-dimensional flow in which 
angle of attack can be considered in the calculations. Aerodynamic 
forces and moments are computed with the computational fluid 
dynamic solver. A modified point mass simulation flight dynamics 
model is applied for the accurate prediction of trajectory of the 
projectile via atmospheric flight to final impact point in order to 
improve its precision. 
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I. INTRODUCTION 

There are roughly four classes of techniques to predict 
aerodynamic forces and moments on a projectile in atmospheric 
flight: empirical methods, wind tunnel testing, computational 
fluid dynamics simulation, and spark range testing. Empirical 
techniques aerodynamically describe the projectile with a set of 
geometric properties and catalog aerodynamic coefficients of 
many different projectiles as a function of these features. The 
advantage of this method is that it is a general method applicable 
to any projectile. In wind tunnel testing, a specific projectile is 
mounted in a wind tunnel at various angles of attack with 
aerodynamic forces and moments measured at various Mach 
numbers using a sting balance. Wind tunnel testing has the 
obvious advantage of being based on direct measurement of 
aerodynamic forces and moments. In computational fluid 
dynamics (CFD) simulation, the fundamental fluid dynamic 
equations are numerically solved for a specific configuration. It 
is a general method that is valid for any projectile configuration. 
In spark range aerodynamic testing, a projectile is fired through 
an enclosed building. At a discrete number of points during the 
flight of the projectile the state of the projectile is measured 
using spark shadowgraphs. Spark range aerodynamic testing is 
considered the gold standard for projectile aerodynamic 
coefficient estimation [1]. If all firing conditions and 
characteristics of a projectile, together with atmospheric 
conditions can be exactly predicted, the projectile will fly on a 
known trajectory and hits a known target point. This trajectory is 
called nominal trajectory. Practically, there are always some 
differences between the real and predicted values; these are 

mainly due to manufacturing, measurement and atmospheric 
modeling errors [2]. The ballistic dispersion of conventional 
artillery shells is due to the dispersion of the initial velocity, the 
quadrant elevation, the angle of bearing, the projectile mass, and 
the initial transversal angular velocity [3]. Monte Carlo method 
was used to find out the optimum values of circular error 
probable (CEP). Therefore, there are always some errors 
between the positions of a desired and a real impact point; these 
differences make the body not to fly exactly on its nominal 
trajectory, and to hit defined target point. The total dispersion 
results mainly from; projectile mass properties, in-bore balloting, 
and free flight problems which are caused mainly due to wind 
velocity and direction (wind profile) [4]. In this work, CFD is 
applied to determine the aerodynamic coefficients by using a 
commercial CFD code called ANSYS FLUENT14.5 which 
solves the governing equations of the flow motion using a 
technique of finite volume and takes the meshed computational 
domain from a pre-processor program called ANSYS 
ICEM-CFD in which the computational domain is generated 
and meshed into cells. The implicit segregated structured grid 
solver was used in these investigations. Second order upwind 
discritization was used for the flow variables and turbulent 
viscosity equations. The aim of the present work is to evaluate 
and improve the firing precision of unguided spinning projectile 
by evaluating CEP. 

II. COMPUTATIONAL METHOD 

A. Model Geometry 

Fig. 1 shows the solid model and main dimensions of the test 
projectile. The full scale 155 mm artillery projectiles was 
generated in INVENTOR software and modeled in CFD 
simulations, in order to determine static aerodynamic 
coefficients. All dimensions are in calibers and reference 
diameter is 154.7 mm [5]. The mass and inertia characteristics of 
the test projectile computed using the INVENTOR 
software.Table 1 shows the main data and initial firing 
conditionsof the unguided artillery projectile, reference area: S = 
πd2/4. 
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TABLE I. MAIN DATA AND INITIAL FIRING CONDITIONS. 

Caliber D 0.1547 m 

Length L 0.702338 m 

Mass m 43 Kg 

Center of Gravity from Nose xCG 0.438338 m 
Axial Moment of Inertia IX 0.1122 Kg.m2

Lateral Moment of Inertia IY=IZ 1.1363 Kg.m2 
Muzzle Velocity V0 692 m/sec 
Wind Speed Vw 0 m/sec 
Firing Angle θ0 44 degree 

 
FIGURE I. TEST PROJECTILE SOLID MODEL AND MAIN 

DIMENSIONS. 

B. Grid Generation 

The grids for the geometry investigated were obtained from 
ANSYS ICEM-CFD software as the numerical grids had been 
previously constructed. Quadrilateral cells were used in domain. 
The projectile contained hexahedral cells. The total number of 
mesh equals 346352 cells. The computational domain was 
extended to be 7 times diameter far from projectile base, 3 times 
diameter around the projectile, and 1 time diameter far from 
projectile nose as shown in fig. 2. 

C. Solver 

CFD is applied to determine the aerodynamic coefficients by 
using a commercial code called ANSYS FLUENT. The 
governing equation in this work is the full Navier-Stokes 
equation. The Turbulence model is the Spalart-Allmaras 
turbulent model. The model solves one transport equation for a 
quantity that is a modified form of the turbulent kinematics’ 
viscosity and has provided better agreement with available 
experimental data. The convective term is approximated by 
second order Roe-FDS scheme. The second order central 
difference scheme is applied to pursuing numerical 
approximation of the viscous term. RungeKutta method was 
applied to step on time. 

D. Boundary Conditions 

The far field boundary is set to pressure far field 
density-based. This boundary condition is a characteristic type 
that allows the solver to determine the conditions at the far field 
boundary and either implicitly sets the boundary condition to 
free stream conditions. Free stream pressure and temperature are 
set to 1atm and 300 K, respectively. Density is then calculated 
from the perfect gas assumption. Angles of attack are taken as 
(α=0°, 4°, 8°and 12°) Mach numbers are taken as (M=0.6, 0.9, 
1.2, 1.5, 2.0, and 2.5). For projectile body, the boundary 
condition is set to be a non-slip wall. 

 
FIGURE II. MESHED PROJECTILE AND COMPUTATIONAL DOMAIN. 

E. Aerodynamic Coefficients 

Table 2 shows aerodynamic coefficient for studied projectile 
which are calculated using CFD code called ANSYS 
FLUENT14.5. See. 

TABLE II. AERODYNAMIC COEFFICIENTS FOR THE TEST 
PROJECTILE. 

M Cୈ  ே೛ഀ C୪೛ܥ ௅ഀ C୑ಉܥ 

0.010 0.1455 1.6940 3.1000 -0.7670 -0.0230
0.400 0.1455 1.6940 3.1371 -0.7670 -0.0230
0.600 0.1455 1.6940 3.1870 -0.7670 -0.0230
0.700 0.1425 1.7110 3.3727 -0.7903 -0.0226
0.800 0.1396 1.7280 3.6856 -0.8337 -0.0217
0.900 0.1366 1.7450 3.8510 -0.8570 -0.0210
0.950 0.1773 1.8393 3.8355 -0.8503 -0.0208
0.975 0.1977 1.8865 3.8179 -0.8429 -0.0207
1.000 0.2181 1.9337 3.7951 -0.8337 -0.0205
1.025 0.2384 1.9080 3.7683 -0.8231 -0.0204
1.050 0.2588 2.0280 3.7386 -0.8120 -0.0203
1.100 0.2995 2.1223 3.6750 -0.7903 -0.0202
1.200 0.3810 2.3110 3.5620 -0.7670 -0.0200
1.350 0.3646 2.3275 3.4192 -0.7670 -0.0200
1.500 0.3481 2.3440 3.3310 -0.7670 -0.0200
1.750 0.3206 2.3590 3.3125 -0.7670 -0.0205
2.000 0.2931 2.3740 3.2990 -0.7670 -0.0210
2.500 0.2452 2.5230 3.2300 -0.7670 -0.0200

III. EQUATIONS OF MOTION 

The modified point mass model gives an accurate 
approximation of the projectile’s trajectory for all except the 
higher firing angles [6]. The equations of motion of the modified 
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point mass model are derived to some assumption, the basic 
assumption is that the epicyclic pitching and yawing motion of 
the projectile is small everywhere along the trajectory. So the 
yaw and pitch moments will be neglected (Cn≅0, Cm≅0). The 
following assumptions are also taken in the trajectory 
calculation: 

- The trajectory is three-dimensional, 

 - Flat and non-rotating earth, and 

 - Constant gravity during whole the trajectory. 

The modified point mass equations of motion are as follows: Cୈ = (Cୈబ	(౉,α) + Cୈαమ ∙ αଶ)(1) Cଢ଼ = ቆCଢ଼β ∙ β+ C୒౦α ∙ α ∙ ቀ୮.୐౨౛౜ଶ୚౗ ቁቇ (2) C୐ = ቆC୐α ∙ α+ C୐౦β ∙ β ∙ ቀ୮.୐౨౛౜ଶ୚౗ ቁቇ (3) C୪ = ቆC୪୮(மሶ ) ∙ ቀ୮.୐౨౛౜ଶ୚౗ ቁቇ (4) (C୫ ≅ 0, C୬ ≅ 0)(5)	
Where the gravitational acceleration in body reference frame 

will as follows by substituting ϕ = 0 

൥g୶g୷g୸൩୆ = ൥−g sin θ0g cos θ ൩ (6) 

Then the acceleration components in body reference frame 
are: ቀୢ୚ୢ୲ቁ୆ = ቀ୯ഥ.ୗ౨౛౜୫ ∙ Cୈ − g ∙ sin θቁ ∙ ı̂ + ୯ഥ.ୗ౨౛౜୫ ∙ ቆCଢ଼ಊ ∙ β + C୒౦ಉ ∙α ∙ ቀ୮.୐౨౛౜ଶ୚౗ ቁ൰ ∙ ȷ̂ + ቆ୯ഥ.ୗ౨౛౜୫ ∙ ቆC୐ಉ ∙ α + C୐౦ಊ ∙ β ∙ ቀ୮.୐౨౛౜ଶ୚౗ ቁቇ + g ∙cos θቇ ∙ k෠(7) 

The angular acceleration of the body about its axis of 
symmetry (spin angular acceleration) is given by [6]: ୢ୮ୢ୲ = େౢ౦∙஡∙୚∙୮∙୐౨౛౜మ ∙ୗ౨౛౜ସ∙୍౔౔ (8) 

Where the aerodynamic angles are: 

Angle of attack 				α = tanିଵ ቀ୵୳ቁ(9) 

u, v, and w are the body velocity components in the body 
reference frame. 

The sideslip angle β  can be computed from the yaw of 
repose angle [7], where 	β = αୖ ∙ ȷ̂ 

Where 		αୖ = ଼∙୮∙୍౔౔஠∙஡∙ୈమ∙୐౨౛౜∙େ౉ಉ∙୚ర ቀୢ୚ୢ୲ × Vቁ  is the yaw of 

repose angle (total angle of attack) [8]. 

In [6] there is a good approximation for the yaw of repose 
angle which is: 

		αୖ = 8 ∙ p ∙ Iଡ଼ଡ଼π ∙ ρ ∙ Dଶ ∙ L୰ୣ୤ ∙ C୑ಉ ∙ Vସ (g × V) 
Where g × V = อ i j k−g ∙ sin θ 0 g ∙ cos θu v w อ = ൥ −v ∙ cos θw ∙ sin θ + u ∙ cos θ−v ∙ sin θ ൩ 
∵ v, w <<1, then v, w≅ 0, u≅v 

∴		αୖ = ଼∙୍౔౔∙୮∙୥∙ୡ୭ୱ஘஠∙஡∙ୈమ∙୐౨౛౜∙େ౉ಉ∙୚య ∙ ȷ ̂
The side slip angle 		β = ଼∙୍౔౔∙୮∙୥∙ୡ୭ୱ஘஠∙஡∙ୈమ∙୐౨౛౜∙େ౉ಉ∙୚య(10) 

The transformation matrix from body frame to earth frame 
is: 

൥ ൩୉ = ൥cos θ ∙ cosψ −sinψ sin θ ∙ cosψcos θ ∙ sinψ cosψ sin θ ∙ sinψ−sin θ 0 cos θ ൩ ∙ ൥ ൩୆ (11) 

In the modified point mass model, Euler angles method is 
not used to get the transformation matrix, but: θ = sinିଵ ቀି୚౰౛୚ ቁ 	and	ψ = tanିଵ ቀ୚౯౛୚౮౛ቁ (12) 

Where: V୶ୣ, V୷ୣ	and	V୸ୣ  are the body velocities in earth 
reference frame. 

IV. TRAJECTORY SIMULATION 

The presented modified point mass model is used to 
calculate the trajectory. Our investigated case corresponds to 
firing angle θ0=44° (corresponding to the maximum range in 
firing tables). Fig.3 shows the spinning projectile trajectory at 
θ0=44°. The figure show thesummit point (5755.174 m ), 
maximum range (18447.245 m), andprojectile drift (386.931 m), 
which is to the right due to projectile high spin rate (spin 
stabilized projectile)while the. All values are 
non-dimensionalized by(୮.୐౨౛౜ଶ୚౗ ). 

 
FIGURE III. UNGUIDED ARTILLERY PROJECTILE NOMINAL 

TRAJECTORY FOR Θ0=44°. 

V. FIRING PRECISION 

Precision improvement has been done for a modified point 
mass model at firing angle θ0=44°. Monte Carlo simulation was 
done randomly for 100 rounds as a method to improve the 
projectile precision. Monte Carlo method was used to find out 
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the optimum value of circular error probable (CEP). In this work, 
we have been calculated CEP about the mean nominal point of 
impact with a simple estimator has been suggested by [9]. The 
models modified in the projectile simulation to include 
dispersion capabilities which are firing conditions, and 
projectile mass properties. Table 3 shows a set ofuncertainty 
parameters that have been used in this work. The limits of 
uncertainty parameters presented in table 3 are the variation 
range of the initial firing conditions (table 1), which have been 
implemented in to Monte Carlo method. Fig.4(a, b) shows CEP 
of projectile. 

TABLE III. UNCERTAINTY PARAMETERS RANGE. 

Parameter Definition Uncertainty 

Range 

Units

Projectile Mass [-0.15, 15] Kg 

Axial Moment of Inertia [-0.005, 0.005] Kg.m2

Lateral Moment of Inertia [-0.05, 0.05] Kg.m2

Projectile Caliber [-0.005, 0.005] m 

Projectile Muzzle Velocity [-2, 2] m/s 

Firing Angle [-0.5, 0.5] degree

Wind Direction at Zero Altitude [-2, 2] degree

Wind Speed at Zero Altitude [-2, 2] m/s 

 
(a) Mean of projectile range 

 
(b) Mean of projectile drift 

FIGURE IV. CEP OF UNGUIDED ARTILLERY PROJECTILE. 

VI. CONCLUSION 

In the present work, CFD technique was used to predict 
aerodynamic coefficients of unguided projectile. Also 
prediction of modified point mass model trajectory was 
performed. The Turbulence model was the Spalart-Allmaras 
turbulent model. The convective term is approximated by 
second order Roe-FDS scheme. The second order central 
difference scheme is applied to pursuing numerical 
approximation of the viscous term. RungeKutta method was 
applied to step on time.Prediction of nominal trajectory and CEP 
of the unguided projectile was done by using MATLAB 
software with Monte Carlo simulation as a method to improve 
firing precision of the projectile. 
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