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Abstract-This paper deduces the relationship between the 
frequency response and loads for a structure within the 
frequency domain, and puts forward a new method for 
identifying the random loads spectrum. Firstly, the response 
power spectrum of structural control points is calculated based 
on the white noise loads spectrum. Then in order to get the 
corresponding random loads spectrum, the response power 
spectrum and the desired output response spectrum are 
compared. Finally, a specific cabin structure is analyzed by using 
the above method. The FEA (Finite Element Analysis) simulation 
results show that the method is valid in identifying the 
fundamental acceleration loads spectrum. 
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I. INTRODUCTION 
In the industrial community, the complexities of vibration 

environments often restrict the direct measurements to the 
external loads of specific objects; for example, it is difficult to 
measure the dynamic loads generated when a aircraft is flying, 
also the dynamic loads created when an earthquake or storm 
happen. As a result, the methods about loads identification 
have attracted much attention. In a word, technicists can 
derive the dynamic loads using the load identification 
methods after evaluating the dynamic response of target 
bodies and analyzing its dynamic property, which supports the 
machine design and analysis[1]. 

There are two ways for the identification of the vibration 
loads: frequency domain method and time domain method. 
The time domain method is not widely recognized since the 
complexities of random process and huge computation. The 
frequency domain method defines the models referring to the 
relationship between system inputs and outputs within 
frequency domain and identifies the dynamic inputs based on 
the outputs. Because of the linearity of model within the 
frequency domain such that the reverse calculation is easy to 
handle with, researchers have made great progress in the load 
recognition. Mira et al. [2] identified the impulse loads with 
the mini-wave method using FEA; and discussed how to set 
the boundary condition in mini-wave recognition. M.C. 
Djamaa et al. [3] had further understood about the dynamic 
loads distribution of the thin pilaster structure using the finite 
differential method; and eliminated the error amplification 
through normalized. Choi et al. [4, 5] improved the stability of 
the load identification results and studied the affect on loads 

identification accuracy selecting different normalization 
parameter. In order to identify a two-dimensional dynamic 
loads distribution, Paper [6] utilized the tensor theory to 
generate the high-dimensional moment basis function in the 
high dimensional orthogonal space and then represented the 
unknown two-dimensional dynamic load distribution with the 
undetermined coefficient in the form of high dimensional 
orthogonal function series. In order to identify the dynamic 
load more accurate and stable, Paper [7] developed two new 
regular methods based on the singular value theory of 
compact operate. Paper [8] put forward the condition number 
weighted algorithm based on inverse pseudo-excitation 
method, which improves the error amplifier problems of the 
identification results generated when matrix is “sick” in 
random loads identification. The methods offered in [2-8] 
solve the problem of identifying the dynamic loads 
mathematically, but they were all limited to be academic 
because of the complexities of the theory and the difficulty of 
large amount of calculation. 

In this paper, a new random loads identification method, 
based on the relationship between random vibration responses 
and loads within the frequency domain, is investigated. 
Besides, an example proves its effectiveness by inversely 
testing the fundamental acceleration load spectrum for a 
specific cabin structure. 

II. THE RANDOM LOAD IDENTIFICATION ALGORITHM 

A. Assumptions 
Normally, people make assumptions to define the 

relationship between system inputs (Unknown load spectrum) 
and outputs (Control spectrum)[7]. For the analysis, it is 
assumed that: 

1) The target system is linearly time-invariant. 
2) The target system is impacted by the stable random 

load. 
3) The location of the random loads is known and fixed. 
4) It is only the unknown random loads that affect the 

entire system response. 

B. Mathematical Model 
To a linear system suffered the random stable loads, the 

relationship between the loads and the response can be 
analyzed within both the frequency and the time domain. In 
the time domain, the system impulse response function ( )h t  
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connects the load ( )x t  with response ( )y t ; In the frequency 
domain, it is the system frequency response function ( )H f  
that bridges from the load ( )X f  to the response ( )Y f . The 
transfer function relationship is depicted in Fig. 1 as below.  

 
FIGURE I. LOAD AND RESPONSE OF THE SYSTEM. 

In the time domain, the response ( )y t  is written as: 

( ) ( ) ( )y t h x t dτ τ τ
∞

−∞
= −∫                            (1)

 
Perform the Fourier Transform to both sides of the 

equation (1). From the theory of convolution, Eq. (1) can be 
transferred into  

( ) ( ) ( )Y f H f X f=                              (2)
 

Eqs. (1) and (2) describe the relationship between the 
system input (The load), the system response transfer function 
(Dynamic characteristics) and the system response (Output).  

After performing the Fourier Transform, the system 
frequency response transfer function is  

( ) ( ) 2i fH f h e dπ ττ τ
∞ −

−∞
= ∫                             (3)

 
So that, the self-correlation function of the system 

response becomes: 

( ) ( ) ( )[ ]

( ) ( ) ( )
1 2 1 2 1 2

y

x

R E y t y t

h h R d d

τ τ

τ τ τ τ τ τ τ
∞ ∞

−∞ −∞

= +

= + −∫ ∫
 (4)

 
In the Eq. (4), ( )

1 2x
R τ τ τ+ −  is the self-correlation function 

of the load. 

Again, after performing the Fourier Transformation to 
both sides of Eq. (4), the equation shows how the response 
power spectrum works with the load power spectrum and can 
be written as: 

( ) ( )

( ) ( )

2

2

1

2

i f

y y

x

S f R e d

H f S f

π ττ τ
π

∞ −

−∞
=

=

∫                    (5)

 

In Eq. (5), ( )H f  is a complex number which contains the 
magnitude and phase of the system. But, ( ) 2

H f  changes to 
be a real number holding the magnitude only. And Eq. (5) 
shows that the response power spectrum is equal to the 
product of the square of the system frequency response 
function ( ( ) 2

H f ) and the load power spectrum ( ( )xS f ). 

At first, assume that the input to the system is a white 
noise. Then the acceleration response power spectrum of the 
system can be derived from Eq. (5) as  

( ) ( ) 2

y
S f H f=%                                (6) 

As ( )ˆ
yS f  represents the acceleration response power 

spectrum of the control system, the necessary fundamental 
acceleration load spectrum ( )ˆ

xS f  for the system is 

( )
( )
( )

( )
( )2

ˆ ˆ
ˆ y y

x

y

S f S f
S f

S fH f
= =

%
                         (7) 

The reverse derivation of the fundamental acceleration 
load spectrum is shown as above. The accuracy of the load 
identification could be tested directly: at first, exciting the 
system using the fundamental acceleration load spectrum 
shown in Eq. (7) as the input; then calculating the acceleration 
response power spectrum of the control points ( )yS f  and 
compare it with the control acceleration response power 
spectrum ( )ˆ

yS f . Finally obtaining the identification accuracy 
in the error form. 

( ) ( )
( )

ˆ
100%

ˆ
y y

y

S f S f
error

S f

−
= ×                     (8)

 

III. SIMULATION RESULT 
In this section, the simulation is conducted for a specific 

cabin structure to prove the effectiveness of the new method. 
In Fig. 2, the cabin structure consists of the enclosure and 
internal side plates. 

 
(a) The entire structure    (b) The internal structure 

FIGURE II. FIGURE 2: THE TYPICAL CABIN STRUCTURE. 

The material for the cabin structure is chosen to be the 
LY12CZ aluminum alloy and the technical specifications are 
listed as: the elasticity modulus E=2.1e11Pa; the Poisson’s 
ratio μ = 0.3; the density ρ = 2700 Kg/ m3. To realize the 
random vibration of the cabin structure, four surfaces are 
fixed completely shown in Fig.3. 

 
(a) The fixed constraints 1 and 2    (b) The fixed constraints 3 and 4 

FIGURE III. THE CONSTRAINTS FOR THE TYPICAL CABIN 
STRUCTURE. 

Assume that the fundamental acceleration load spectrum 
in the X direction is the main stimulation acting on the four 
surfaces. In detail, the power spectrum density of the 
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acceleration response in the X direction at the point 
A( ( )ˆ A

out
S f ) is a given trapezoidal spectrum shown in Fig.4. 

 
FIGURE IV. THE POWER SPECTRUM OF CONTROL OUTPUT 

ACCELERATION 

As shown in Fig. 4, the double logarithm coordinate is 
utilized. Besides, the slope “N” by definition can be expressed 
as dB / oct , which means the unit octave ( oct ) increases or 
decreases the power spectrum density in “ dB ”. The slope is 
definded as: 

2

W W
1 0 lg 1 0 lg

W W
= lg 2

lo g lg

H H

L L

H H

L L

d B
N

f fo c t

f f

= =
                 (9) 

Where Hf  is the highest frequency( Hz ); Lf  is the lowest 
frequency( Hz ); HW  is the power spectrum density when the 
frequency is Hf ( 2 /g Hz ); LW  is the power spectrum density 
when the frequency is Lf ( 2 /g Hz ). 

It is easy to get 1=0.01W 2 /g Hz 、 2 =0.007W 2 /g Hz  using Eq. 
(9). Then, get that the power spectrum of control acceleration 

( )ˆ A

out
S f  is 

( )

( ) ( )
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(10)

 At this time, imposing a white noise input whose 
amplitude is 1 and bandwidth ranges from 20 Hz to 2000 Hz 
to the constraint surfaces 1 to 4 and then performing the 
random vibration simulation, the acceleration response power 
spectrum for point A ( )A

out
S f%  is shown in Fig.5. 

 
FIGURE V. ACCELERATION RESPONSE POWER SPECTRUM FOR 

POINT A. 

 
FIGURE VI. THE AVAILABLE FUNDAMENTAL ACCELERATION 

LOAD  

Since the ( )ˆ A

out
S f  is assumed to be a trapezoidal spectrum 

expressed in Eq. (10), the corresponding fundamental 
acceleration load spectrum ( )ˆ

inS f  for the constraint surfaces 1 
to 4 is also available after reverse derivation in application of 
Eq. (11). The result is shown in Fig. 6 as follow 

( ) ( )
( )

( )
( )2

ˆ ˆ
ˆ

A A
out out

in A
out

S f S f
S f

S fH f
= =

%
                       (11) 

Then to test the accuracy of the method, the best way is to 
apply the derived undamental acceleration load spectrum 
shown in Fig. 6 to the constraint surfaces. Comparing the 
resulted output response spectrum and the one given before 
and referring to Fig. 7, the simulation results match really well 
with the desired output, which indirectly show that the new 
method is valid. 

 
FIGURE VII. IDENTIFIED ACCELERATION LOAD SPECTRUM 

AND THE CONTROL PECTRUM . 

 
FIGURE VIII. ERROR OF THE ACCELERATION RESPONSE 

POWER SPECTRUM. 

Fig. 8 elaborates the error distribution calculated using Eq. 
(8) and it is clear to see that the output error appears in the 
proximities of some principal resonant frequency points. 
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However, a maximum only 0.3385% is achieved, which is too 
small to be ignored.  

IV. CONCLUSION 
The article comes up with a convenient random load 

identification method based on the relationship between the 
random vibration load and corresponding response in the 
frequency domain. In order to get the corresponding random 
load spectrum, the response power spectrum under the white 
noise load spectrum and the desired output response spectrum 
are compared. According to the typical cabin structure model, 
we modeled the power spectrum of acceleration response of 
the control points on the cabin as an trapezoidal spectrum and 
applied the method to recognize the fundamental acceleration 
load spectrum on the constraint surfaces of the cabin structure. 
After comparing the control point acceleration response power 
spectrum under the recognized load spectrum with the control 
spectrum we obtained the maximum error to be 0.3385%, 
which suggests high precision and also proves the accuracy 
and feasibility of the method.  
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