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Abstract-Mesh stiffness is one of fundamental parameters of face 
gear dynamics. Thus, a calculation solution of mesh stiffness of 
face gear drives was constructed by finite element method. The 
impact of face gear rim thicknesses on mesh stiffness was 
predicted. The analytical results indicate that a face gear rim is 
thicker, average mesh stiffness is larger, but changes of average 
mesh stiffness would slow versus changes of face gear rim 
thickness. The contributions are benefit to improve the design of 
face gear drives associated with low vibrations. 
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I. INTRODUCTION 
Face gear drives are addressed by many scholars due to its 

insensitive manufacture and alignment errors versus bevel gear 
drives [1~5]. Face gear dynamics is a part of studies of face 
gear drives, and mesh stiffness is one of the fundamental 
parameters of face gear dynamics. Mesh stiffness calculation 
solutions of spur and bevel gear drives have been constructed 
[6~9]. However, mesh stiffness of face gear drives with a spur 
gear is yet to be further researched. Thus, a constructed 
solution of face gear drives mesh stiffness was provided, and 
the impact of face gear rim thicknesses on mesh stiffness is 
predicted in this study. It is based on the contact finite element 
method (FEM) for face gear drives. The geometric modelling 
of a face gear drive is constructed. The mesh stiffness solution 
and data processing were analysed in FEM software. The 
deformations of different rims are also computed. And then 
mesh stiffness of face gear drives of different rim thicknesses 
are obtained. The conclusions of this study indicate that a 
thicker face gear rim will lead to larger average mesh stiffness, 
but changes of average mesh stiffness would slow versus 
changes of face gear rim thickness. Therefore, the paper 
provides an approach for calculating mesh stiffness of face 
gear drives, and the impact prediction is meaningful for its 
design process. 

II. CONSTRUCTION OF A GEOMETRIC MODELLING SOLUTION 

A. Equations of Face Gear Tooth Surface 
Face gears are manufactured by involute generating cutters. 

The coordinate system of a cutter [10] is given by Fig. 1. φs is 
the rotational angle of the cutter. The tooth surface vector 
equations [10] of the cutter are expressed as: 
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Where rbs is the base circle radius of the cutter; uS and θS 
are the axial parameter and angle parameter of a point on 
cutter surface, respectively; φS is the rotational angle of the 
gear cutter. θS0 is an angle parameter from the symmetric plane 
of the tooth space to the initial point of the involute; “±” 
corresponds to the involutes at the two sides of the tooth space, 
namely γ-γ and β-β, respectively. 

Unit normal of the cutter tooth surface [10] is expressed as: 
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The processing coordinate systems of an orthogonal face 
gear are presented in Figure 2. There are four coordinate 
systems, which are two fixed ones for the cutter S and the face 
gear 2, named OS0xS0yS0zS0 and O2x20y20z20, respectively; two 
rotating ones for the cutter S and the face gear 2, named 
OSxSySzS and O2x2y2z2, respectively. The motion relationship of 
the gear shaper and a face gear is shown in Figure 2 (a). 

 
FIGURE I. THE COORDINATE SYSTEM OF THE CUTTER TOOTH 

SURFACE [10]. 

 
FIGURE II. THECOORDINATE SYSTEMOF FACE GEARS MACHINE 

[10] 

ys0

xs0

ys

xs
φs

γ

β

γ
β

θs

θs
θs0

International Conference of Electrical, Automation and Mechanical Engineering (EAME 2015)

© 2015. The authors - Published by Atlantis Press 180



 

Tooth surface equations of a face gear are deduced by the 
conversion relationship from coordinate system SS to 
coordinate system S2. They are expressed [10] as: 
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Where [M2, S] represents the transformation matrix of the 
two coordinate systems, and the second equation can be 
achieved by the correct meshing conditions. Therefore, the 
tooth surface equations can be expressed[10] as below: 
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Where q2S is the gear ratio of the face gear and the gear 
cutter; φ2 =q2Sφ2; φθ =φS± (θS0+θS). 

B. Tooth Contact Analysis 
The point contact face gear drives are studied because of 

unbalanced loading of line contact. A medium gear is a gear 
that can meet the line contact with the face gear and the pinion 
at same time. It is an imaginary gear. Its geometry parameters 
are always consistent with the cutter, and the tooth profile 
coordinate is shown in Figure3 [11]. In Figure 3, rb is the base 
circle radius of the medium gear; rk is the radius vector of a 
point on the tooth profile, named k. θk is the angle between rk 
and y. 

Hence, the tooth profiles equations [11] of the medium 
gear are expressed as: 
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Where uk is a variable of the tooth profile equations of the 
medium gear in the tooth width direction. “+” represents the 
left tooth profile; “-” represents the right tooth profile in xm. 
Hence the homogeneous equation of the tooth profile is 

[ 1]T
m m mx y z=mR ， ， ， . 

The coordinate systems of the point contact face gear 
drives are shown in Figure4 [11]. In the coordinate systems, 
OgXgYgZg and Og'Xg'Yg'Zg' are the static coordinate and mobile 
coordinate of the pinion, respectively; OmXmYmZm and 
Om'Xm'Ym'Zm' are the static coordinate and mobile coordinate of 
the medium gear, respectively; OfXfYfZf and Of'Xf'Yf'Zf' are the 
static coordinate and mobile coordinate of the face gear, 
respectively. The plane OgXgYg and OmXmYm are in the same 
plane. The distance between Og and Om is a. The distance 
between the plane OmXmZm and OfXfYf is ra, and it is equal to 
the radius of the addendum circle of the medium gear. The 
plane OmXmYm and OfXfZf are parallel, and the distance 
between them is d. 

 
FIGURE III. TOOTH PROFILES COORDINATE OF THE MEDIUM GEAR. 

 
FIGURE IV. THE DRIVE COORDINATE SYSTEM OF POINT CONTACT 

FACE GEARS [11]. 

The surfaces equations and the envelope condition can be 
expressed[11] as eqn. (6) and eqn. (7). These equations are 
under the envelope principle. 
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Where Mf'm' is the homogeneous matrix that the medium 
gear generates the face gear with envelope method. The 
surfaces equations of the medium gear can be expressed as eqn 
(8)The surfaces are enveloped by the spur gear. The envelope 
condition is expressed as eqn(9) [11]. 
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Where Rg=Rm, Mm'g' is the homogeneous matrix when the 
pinion envelopes the medium gear. The four equations eqn(6), 
(7), (8) and (9) are contact equations of a face gear drive. 

C. Geometry Model of a Face Gear 
Discrete data points of the tooth surface can be solved 

from the equations of the face gear tooth surface by numerical 
calculation. The parameters of the face gear drive are shown in 
Table 1. The gear tooth surface can therefore be simulated as 
presented in Figure5. In the picture, the top land is sharpened 
at the inner radius and the dedendum is undercut at the outside 
radius. The contact points can be resolved as shown in Figure5 
according to the above contact equations. To optimize the 
transmission, an appropriate face gear width like in Figure6 is 
chosen so that the contact points are on the middle of face 
width. Then a three-dimensional solid model can be simulated 
with the face gear surface in Figure6in software. The model of 
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