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Abstract-A 2- Degree Of Freedom (DOF) planar parallel 
mechanism is introduced and the inverse solution of the 
kinematics and Jacobin matrix and workspace analysis are 
carries out. The mathematical conditions of which the singular 
configuration of the manipulator occurred based on Jacobin 
matrix and the relationship between the singular configuration 
and the bars are obtained. The impacts of design parameters on 
workspace are analysed and the workspace is discussed in detail 
using the graphical method, and the sizes of area on different 
design parameters are derived. The results are useful to the 
manufacturing and control of 2-DOF parallel prototype. 
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I. INTRODUCTION 
Parallel mechanisms have advantages in dynamic 

performance, stiffness, accuracy, payload capability and 
have aroused the great interest of a wide variety of researchers 
[1]. As research continues, the weaknesses and shortages of 6-
DOF Parallel mechanism are exposing, such as strong 
coupling in position and posture space, weak posture 
performance of the moving platform, no explicit kinematic 
forward solution, complicated design and control [2]. 

Compared with the general 6-DOF parallel mechanism, 
lower-mobility parallel mechanisms [1,3] whose degrees of 
freedom are less than six have advantages of simple structure, 
low cost in design, manufacturing and control. Because of its 
broad application prospects, lower-mobility parallel 
mechanisms are becoming the focus and emphasis of  the 
research[4]. The 2-DOF parallel mechanism is a very 
important member of lower-mobility parallel mechanisms 
family and the planar parallel mechanism of the 2-DOF 
parallel mechanism can realize accurate positioning and 
arbitrary trajectory tracking in a plane. Many scholars have 
been engaged in it, and have reaped rich fruits [5-8]. In this 
article, a planar 2-DOF parallel mechanism is proposed and 
the kinematics, singularity and workspace are studied 
systematically. 

II. KINEMATIC ANALYSIS 

A. Inverse Kinematics Analysis 
The proposed 2-DOF parallel mechanism illustrated in fig. 

1 is composed of a fixed base platform, a moving platform, 
two active sliders and two kinematic chains. One of the two 
kinematic chains consists of a parallelogram. Sliders A1 and 

A2 drive the two kinematic chains when they slide along the 
guide ways; and the sliders are driven by the servomotors via 
leads screw. Thus the moving platform possesses a 2-DOF 
translational moving capability in a plane. 

As showed in fig. 1, the base coordinate systemO XZ−  is 
attached to the base and the moving coordinate system 

m m mO X Z−  is fixed at the center of the compound rotating 
joints. The distance between the two parallel sliders e is a . 

 
FIGURE I. SCHEMATIC DIAGRAM OF THE PLANAR 2-DOF 

PARALLEL MECHANISM. 

According to the geometric relationship, the constraint 
equation associated with the links can be written as: 

( 1,2)i i iAB l i= =                            (1) 
In coordinate system O XZ− , the point coordinate of 

( 1, 2)iA i = and ( 1, 2)iB i = are ( , 0)ix and ( , )X Z . 

From eqn(1), the following equations can be obtained. 

( )
( ) ( )

2 2 2
1 1

2 2 2
2 2

X x Z l

X x Z a l

⎧ − + =⎪
⎨

− + − =⎪⎩

                (2) 

The inverse kinematic solutions of the parallel mechanism 
can be written as 

( )

2 2
1 1

22
2 2

x X l Z

x X l Z a

⎧ = ± −⎪
⎨
⎪ = ± − −⎩

                (3) 
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A. Effective Workspace 
Here Select the working mode which is shown in fig 2c（-，

-）to study. The area and shape of the effective workspace 
vary with the changes of the parametersδ , a  and 1 2( )l l l= . 

1) 0 lδ< <  

a) 0 a l< <  .In this case the shapes of the effective 
workspace are shown in fig.5.  And when the parameters δ , 
a  and l  suit for the relationships as follows : 

(1) 2 2 2 0a lδ δ+ − > , the shapes of the effective 
workspace are shown in fig.5(a-1) and the value of the area 

 2 2 2 2

/2
2 ( ( ) )

b

a
S l z l z a dzδ= − + − − −∫      (6) 

Where 
3 2 2 2 2 4 2 4 2 4 2 6

2 2

1 4 4 2
2

a a a l l a ab
a

δ δ δ δ δ δ
δ

+ + + − − −
=

+
 

the parameter of  b  has the same meaning in the equation 
below. 

(2) 2 2 2 0a lδ δ+ − = , the shapes of the effective 
workspace are shown in fig.5(a-2) and the value of the area  

2 2 2 2

/2
2 ( ( ) )

a

a
S l z l z a dzδ= − + − − −∫       (7) 

(3) 2 2 2 0a lδ δ+ − < , the shapes of the effective 
workspace are shown in fig.5(a-3) and the value of the area  

2 2 2 2

/2
2 ( ( ) )

a

a
S l z l z a dzδ= − + − − −∫      (8) 

   
(a-1)                        (a-2)                          (a-3) 

         
(b)                                         (c) 

FIGURE V. THE SHAPE OF EFFECTIVE WORKSPACE ( 0 lδ< < ). 

b) a l= . In this case the shapes of the effective 
workspace are shown in fig .5(b) and the value of the area 

  2 2 2 2

/2
2 ( ( ) )

b

a
S l z l z a dzδ= − + − − −∫             (9) 

c) a l> . In this case the shapes of the effective 
workspace are shown in fig.5(c) and the value of the area 

2 2 2 2

/2
2 ( ( ) )

b

a
S l z l z a dzδ= − + − − −∫          (10) 

2) lδ = . In this case the shapes of the effective 
workspace are shown in fig .6. And when parameters a  and l  
suit for the relationships as follows: 

a) 0 a l< < . In this case the shapes of the effective 
workspace are shown in fig.6(a)and the value of the area 

2 2 2 2

/2
2 ( ( ) )

a

a
S l z l z a dzδ= − + − − −∫          (11) 

b) a l= . In this case the shapes of the effective 
workspace are shown in fig.6(b) and the value of the area  

2 2 2 2

/2
2 ( ( ) )

l

a
S l z l z a dzδ= − + − − −∫          (12) 

c) a l> . In this case the shapes of the effective 
workspace are shown in fig.6(c) and the value of the area  

2 2 2 2

/2
2 ( ( ) )

l

a
S l z l z a dzδ= − + − − −∫        (13) 

  
(a)                              (b)                           (c) 

FIGURE VI. THE SHAPE OF EFFECTIVE WORKSPACE ( =lδ ). 

3) lδ > . In this case the shapes of the effective 
workspace are shown in fig.7. And when parameters a  and l  
suit for the relationships as follows: 

a) 0 a l< < . In this case the shapes of the effective 
workspace are shown in fig .7(a) and the value of the area 

   2 2 2 2

/2
2 ( ( ) )

a

a
S l z l z a dzδ= − + − − −∫         (14) 

b) a l= . In this case the shapes of the effective 
workspace are shown in fig .7(b) and the value of the area 

2 2 2 2

/2
2 ( ( ) )

l

a
S l z l z a dzδ= − + − − −∫         (15) 

c) a l> . In this case the shapes of the effective 
workspace are shown in fig.7(c) and the value of the area 

2 2 2 2

/2
2 ( ( ) )

l

a
S l z l z a dzδ= − + − − −∫         (16) 

 
(a)                           (b)                         (c) 

FIGURE VII. THE SHAPE OF EFFECTIVE WORKSPACE 

( lδ > ). 

V. CONCLUSIONS 
The paper presented a 2-DOF planar parallel mechanism 

and its inverse kinematic and the Jacobian analysis are 
obtained. The effects of the changes of various parameters on 
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its workspace are demonstrated in detail and the conclusions 
are as follows: 

1) With other conditions unchanged the larger the travel of 
the guide way is, the larger the workspace is. 

2) The structure of variable linkages can improve the 
applicability of the parallel mechanism. 
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