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Abstract-A multi-relaxation time lattice Boltzmann method 
(MRT-LBM) fluid flow analysis code is developed based on a 
two-dimensional D2Q9 lattice model and sub-grid eddy viscosity 
model of Smagorinsky. Benchmarking of the MRT-LBM is 
performed for a turbulent flow over staggered tube bundles at 
Reynolds number of 18,000and compared with standard k-ω 
turbulence and large eddy simulation (LES). The accuracy of the 
present MRT-LBM with respect to the mean velocity profiles is 
found to be reasonably acceptable and even comparable to the 
LES whereas the computational efficiency is superior. 
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I. INTRODUCTION 
Turbulent flow over tube bundles has been of interest over 

several decades. Especially, inside a lower plenum of a very 
high temperature (nuclear) reactor (VHTR), hot gas jets from 
reactor fuel channels with very high velocities between 35~70 
m/s with temperatures of about 1,000 K mix with each other 
before flowing out to the exit and the analysis is a challenging 
task due to complex fluid flow physics such as unsteadiness, 
turbulence, buoyancy effects, strong streamline curvature, and 
formation of vortices, etc [1]. Therefore, efficiently running 
computational fluid dynamics (CFD) technique with 
reasonable accuracy would be desirable for a mechanical 
design. 

Compared with previous studies [2-3] using general CFD 
methods or direct numerical simulation (DNS), Lattice 
Boltzmann Method (LBM) [4],as an alternative,is a relatively 
newer approach using simple microscopic models to simulate 
complicated macroscopic behavior of transport phenomena. 

In this paper, a two-dimensional computational fluid 
dynamic analysis code is developed based on the multi-
relaxation time lattice Boltzmann method (MRT-LBM) 
derived from the generalized lattice Boltzmann equations 
(GLBE) of D’Humiereset al [5]. The code is a two-
dimensional D2Q9 lattice model and equipped with classical 
sub-grid eddy viscosity turbulence model of Smagorinsky [6]. 
The computational accuracy and efficiency of the code is 
benchmarked against a high Reynolds number flow with 
Re=18,000 over multiple tube bundles of Simonin and 
Barcouda[7]. General purpose CFD computations are also 
performed using the FLUENT [8] for the same geometry and 

compared with the present MRT-LBM in terms of accuracy 
and computing time. 

II. MULTI-RELAXATION TIME LATTICE BOLTZMANN 
METHOD 

The multi-relaxation time lattice boltzmann method (MRT-
LBM) is developed by D’humières[5]. Two dimensional 
lattice version (D2Q9) is shown in fig. 1. 

           
(a) D2Q9 Lattice Model        (b) Curved Wall Boundary 

FIGURE I. MOMENTUM EXCHANGE MODEL FOR A CURVED 
WALL. 

A set of velocity moments for this lattice model are 
defined as follows: ࢓ ൌ ሺ࣋, ,ࢋ ,ࢿ ࢐࢞, ,࢞ࢗ ࢐࢟, ,࢟ࢗ ,࢞࢞࢖  (1)         ࢀሻ࢟࢞࢖

whereρ is the fluid density, e is the energy, ε is a quantity 
related to the lattice velocity e, ݆௫and ݆௬are the components of 
the momentum flux density of݆ ൌ ,௫ݑuሺߩ  ௬are theݍ ௫andݍ ,௬ሻݑ
energy fluxes, ݌௫௫ and ݌௬௬are the quantities proportional to the 
diagonal and off-diagonal components of the viscous stress 
tensor, and T denotes the transpose operator. The set of 
velocity moments is related with the density distribution 
function ࢌas following: ࢓ ൌ ࢌ                            (2)                                  ࢌۻ ൌ ሺࢌ૙, ,૚ࢌ ,૛ࢌ ,૜ࢌ ,૝ࢌ ,૞ࢌ ,૟ࢌ ,ૠࢌ  (3)       ࢀૡሻࢌ

where ఈ݂ is the density distribution function moving with 
each discrete lattice velocities [9]ataspatial position and at 
time. 

The matrix Min eqn(2) is the 9x9 matrix which linearly 
transforms the distribution function,  f, to the velocity 
momentset,m,and is given by 
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 (4) 

The evolution equations of the MRT-LBM are as follows: ࢓ሺ࢘ ൅ ,࢚ࢾࢻࢋ ࢚ ൅ ሻ࢚ࢾ െ ,ሺ࢘࢓ ࢚ሻ ൌ െ܁ሾ࢓ሺ࢘, ࢚ሻ െ ,ሺ࢘ࢗࢋ࢓ ࢚ሻሿ   (5) ࢌ෨ࢻሺ࢘ ൅ ,࢚ࢾࢻࢋ ࢚ ൅ ሻ࢚ࢾ ൌ െିۻ૚࢓ሺ࢘ ൅ ,࢚ࢾࢻࢋ ࢚ ൅  ሻ    (6)࢚ࢾ
whereSis the diagonal matrix consisting of nine relaxation 

parameters and ࢗࢋ࢓ is the velocity moment equilibrium vector 
given by [5]  ࢗࢋ࢓ ൌ ሺ૙, ,ࢗࢋࢋ ,ࢗࢋࢿ ૙, ,ࢗࢋ࢞ࢗ ૙, ,ࢗࢋ࢟ࢗ ,ࢗࢋ࢞࢞࢖  (7)   ࢀሻࢗࢋ࢟࢞࢖

The macroscopic fluid density, ߩ , and the moment 
fluxdensity,ࡶ൫ ௫݆, ݆௬൯, can be obtained from a collision step at 
each time using the evolution equations, Eqs.(5) and (6), and 
given by:                                   ߩ ൌ ∑ ఈ݂ఈ ൫ࡶ  (8)                                     ௫݆, ݆௬൯ ൌ ∑ ఈ݂ࢻࢋఈ                              (9) 

And new density distribution functions at the next time 
step are calculated from following streaming step:              ఈ݂ሺݎ ൅ ݁ఈߜ௧, ݐ ൅ ௧ሻߜ ൌ ሚ݂ఈሺݎ, ݐ ൅  ௧ሻ     (10)ߜ

where ሚ݂ఈ denotes the post-collision distribution function 
calculated from eqn(6).  

The unresolved turbulence scale is modeled by the 
standard Smagorinskymodel[6].The basic ideaof implementing 
turbulence in the LBM is to locally (i.e. independently for 
each site) increase relaxationtime residing in S of eqn (4). 

For the boundary conditions, the methods of Hoet 
al[10]andMei et al [11] are applied and all the equations are 
coded into the MATLABscripts[12]. Following is the 
discussion of the benchmarking analysis and it is made in 
terms of macroscopic flow quantities such as flow patterns and 
velocity profiles. 

III. BENCHMARKING ANALYSIS FOR STAGGERED TUBE 
BUNDLES 

Staggered tube bundles experimented by Simonin and 
Barcouda[7] is chosen as a benchmarking case. 
Arepeatingsubsection for computational simulationsconsists of 
a central tube and four quarter tubes in the corners as shown in 
fig. 2(a). The fluid flow is isothermal with Reynolds numberof 
around 18,000. 

To evaluate the performance of the present MRT-LBM 
over said general CFD methods, we also performed additional 
two computations: unsteady Reynolds-averaged Navier-Stokes 
(URANS) and large eddy simulation (LES). In case of the 
URANS, computations are performed using the second-order 
turbulence model, namely, the standard k-ω turbulence model. 
Secondly, the LES computations are madewithbothsub-grid 
scale (SGS) turbulence closures of Smagrinsky-Lilly [13] and 
WALE model [14]. 

 
(a) Boundary conditions     (b) Lines where velcocitiesmeasured 

FIGURE II. SIMULATION CONDITIONS FOR THE FLOW THROUGH 
STAGGERED TUBE BUNDLES. 

For the MRT-LBM computations, 140x140 lattices are 
used after grid sensitivity calculations. On the other hand, for 
the 2D Standard k-ω model,42,952 cells were usedafter mesh 
sensitivity studies as well. In the 3D LES model, 1,788,584 
cells in total were usedwhere the number of 2D cells is 47,068 
and the number of z-direction cellsis 38 (domain length is 5 
mm). The initial inlet (upstream) velocity of ݑ௠=1.06 m/sec is 
applied with water density of 998.2 kg/m3and dynamic 
viscosity of 0.001219kg/m.sec. For the other CFD calculations, 
the second-order implicit time differencing scheme is 
employed. The time step is set to be adaptive with the 
minimum time step set to 1×10−5 sec and the maximum set to 
5×10−3 sec. Total 30,000 time steps are computed.All the 
computations are carried out in the DELL T4600® workstation 
with Intel®6-core 3Hz. 

The unsteady flow velocity contours obtained from the 
four computations are shown in fig. 3. Among the four 
computations, only the flow structures from the URANS 
showstylized behaviour as shown in fig.3(b). However, for the 
rest of the computations (the MRT-LBM and the LES with 
two sub-grid models),shown in figs. 3(a), (c) and (d), 
respectively, one can clearly see more dynamically 
unstableturbulentstructures produced by the wake along the 
tubes. The flow structures from the LES-WALE shown in 
fig.3(d) are most chaotic and tattered than the other 
computations. And the flow structures from the MRT-LBM 
shown in fig.3(a) are most similar to those from the LES-
Smagorinsky shown in fig.3(c). Also, strong coupling of 
accelerated flow along the lower side of the central cylinder 
and decelerated flow along the upper rear side of the lateral 
cylinder (bottom left) is more evident in the MRT-LBM and 
the LEScomputations.Major reason of the difference between 
the URANS and the LES comes from averaging methods, e.g., 
time and spatial averaging, respectively. 

The stream-wise time mean velocity (x-velocity, 
hereinafter) and span-wise time mean velocity (y-velocity, 
hereinafter)along the lines at x = 0 mm, 11 mm, 16.5 mm, y=0 
mm and y = 22.5 mm shown in fig.2(b) are shown in fig. 4. 
Overall results show that the discrepancies of the experimental 
and computational time-meanvelocities are marginal and 
probably in therange of the measurement uncertainty of the 
experiment. The MRT-LBM shows relatively greater deviation 
from the experiment near cylinder walls than the other general 
computations. This is due to the fact that the near-wall 
resolution is significantly higher in the URANS and the LES 
than the presentMRT-LBM which uses a simple bounce-back 
boundary model for the fluid-solid boundary. Nevertheless, x-
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velocity profiles from the MRT-LBM are very close to the 
experimental data and comparable or even superior to the 
other computations. 

 
(a) MRT-LBM(b) URANS 

 
(c) LES/Smagorinsky(d) LES/WALE 

FIGURE III. SUBSEQUENT VELOCITY MAGNITUDE CONTOURS 
FROM EACH METHOD. 

Comparing the four types of computational results with the 
experimental data for the staggered tube bundles, it is shown 
that accuracy of the present MRT-LBM computation is 
comparable to theLES computations. Moreover, computing 
efficiencyin terms of elapsed time per one cell for the 
presentMRT-LBM is four to five orders of magnitude less than 
the other three computations. 

  
(a) Velocity profiles x=0 mm. 

  
(b) Velocity profiles at x=11 mm. 

  
(c) Velocity profiles at x=16.5 mm. 

  
(d) Velocity profiles at y=0 mm. 

  
(e) Velocity profiles at y=22.5 mm. 

FIGURE IV. STREAM-WISE AND SPAN-WISE VELOCITY PROFILES. 

IV. CONCLUSIONS 
A two-dimensional computational fluid dynamic analysis 

code based on multi-relaxation time lattice Boltzmann method 
is developed and benchmarked against staggered tube bundles 
interested in the lower plenum of a very high temperature 
reactor. The MRT-LBM computations fora flow through the 
staggered tube bundles are also compared with general 
purpose CFD computationsusingthestandard k-ω turbulence 
and the large eddy simulation (LES) with turbulence closures 
of Smagrinsky-Lilly and WALE model. The agreement 
between the experimental and the present MRT-LBM 
computational results is reasonably acceptable for an 
engineering level of computation. Development of three 
dimensional in-house MRT-LBM codes based on D3Q15 and 
D3Q19 lattice models including thermal effects are underway. 

ACKNOWLEDGEMENTS 
This work was partially supported by Basic Atomic Energy 

Research Institute program (NRF-2010-0018759) and partially 
by the Nuclear Safety Research Program through the Korea 
Radiation Safety Foundation(KORSAFe), granted financial 
resource (Grant Code: 1305008-0113-HD120)from the 
Nuclear Safety and Security Commission(NSSC), Republic of 
Korea. 

REFERENCES 
[1] McIlroy Jr., H.M., McEligot, D.M.,Pink,R. J., Measurement of turbulent 

flow phenomena for the lower plenum ofa prismatic gas-cooled reactor. 
Nucl. Eng. and Des.,240, pp.416–428, 2010. 

[2] Ridluan, A. and Tokuhiro,A., Benchmark Simulation of Turbulent Flow 
through a Staggered Tube Bundle to Support CFD as a Reactor Design 
Tool. Part II URANS CFD Simulation.J.ofNucl.Sci.and Tech.,45, 
pp.1305-1315, 2008. 

[3] Moulinec, C., Pourqui´e, M. J. B. M., Boersma, B. J., Buchal, T., 
Nieuwstadt, F. T.M.,Direct numerical simulation on aCartesian mesh of 
the flow through a tube bundle.Int. J.Comput. Fluid Dyn,18,pp.1–14, 
2004. 

[4] Succi, S., The Lattice Boltzmann Equation for fluid dynamics and 
beyond, Clarendon Press: Oxford, 2001. 

203



[5] D’Humieres, D.,Ginzburg, I., Krafczyk, M., Lallemand, P.,Luo, L.-S., 
Multiple-relaxation-time lattice Boltzmann models in three dimensions. 
Phil. Trans. R . Soc. Lond. A, 360,pp.437-451, 2002. 

[6] Smagorinsky, J. S., General circulation experiments with the primitive 
equations, part I: The basic experiment. Monthly Weather Review,91, 
pp.99-164, 1963. 

[7] Simonin, O. and Barcouda, M., Measurements and prediction ofturbulent 
entering a staggered tube bundle.4th Int. Symp.Applicationsof Laser 
Anemometry to Fluid Mechanics, Lisbon,Portugal, paper 5.23, 1988. 

[8] ANSYSInc.,ANSYS FLUENT Theory Guide,Ver. 14.0, Canonsburg, 
2011. 

[9] Yu, D., Mei, R., Luo, L.-S., Shyy, W., Viscous Flow Computations with 
the Method of Lattice Boltzmann Equation.Prog.Aerosp.Sci., 39, pp.329-
367, 2003. 

[10] Ho, C.-F., Chang, C., Lin, K.-H., Lin, C.A., Consistent Boundary 
Conditions for 2D and 3D LatticeBoltzmannSimulations.Tech Science 
Press CMES, 44, pp.137-155, 2009. 

[11] Mei, R., Yu, D., Shyy, W., Force evaluation in the lattice Boltzmann 
method involving curved geometry. Phys. Rev., E, 65, 041203 (14pp), 
2002. 

[12] Mathworks, MATLAB Language Reference Manual, version 2013b, 
2013. 

[13] Langhans, W., Schmidli, J., Szintai,B., A Smagorinsky-Lilly turbulence 
closurefor COSMO-LES: Implementation and comparison to ARPS. 
COSMO-Newsletter, No.12, 2012. 

[14] Ducros, F., Nicoud,  F., Poinsot, T., Wall-Adapting Local Eddy-
Viscosity Models forSimulations in Complex Geometries. Proc. of 6th 
ICFD Conference on NumericalMethods for Fluid Dynamics, pp.293-
299, 1998. 

204




