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Abstract-A traditional assumption underlying most data 
converters is that the signal should be sampled at a rate 
exceeding twice the highest frequency. In this paper, we employ a 
method for low-rate sampling of multi- band signals via applying 
periodic nonuniform sampling in shift-invariant spaces generated 
by m kernels with period T. So, the sampling and reconstruction 
of signals were transformed into matrix and vector operations, 
the generalized inverse can be use to find the answer and a 
interpolator can insure that complete reconstruction will be 
achieved. Finally, we validate the method in MATLAB; the 
conclusion of simulation shows the frame-work presented here is 
feasible.   
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I. INTRODUCTION 

  One goal in designing a software defined radio (SDR) 
receiver is to move the analog-to-digital converter (ADC) as 
close as possible to the antenna [1]. With the development of 
wireless technology, this enables the modulation of 
narrow-band signals by high carrier frequencies. To 
demodulate the desired signals, the required sampling rate for 
the ADC could often be too high to be attained if the Nyquist 
sampling theorem is to be satisfied [2]. The uniform bandpass 
sampling method has been proposed to figure out the problem 
[3] . The uniform bandpass sampling is the intentional aliasing 
of the information bandwidth of the signal [4] . The sampling 
frequency requirement is no longer based on the frequency of 
the RF carrier, but rather on the information bandwidth of the 
signal. Thus, the resulting processing rate can be significantly 
reduced. However, the uniform sampling still suffers from 
many constraints such problem of timing jitter in A/D 
conversion process [5].  

A signal class that plays an important role in sampling 
theory is signals in shift-invariant (SI) spaces [6]. A sample in 
shift-invariant spaces was proposed to overcome these 
problems.  

This paper is organized as followed. Section II sets up the 
sampling model. In Section III, we use generalized inverse to 
recover sampled signals. In section IV, we analyze the 
reconstruction error. Finally, section V shows simulation 
results. 

II. PROPOSED SCHEME 

The architecture of parallel sampling system is shown in 
figure 1.   

 
FIGURE I. THE MODE OF THE PERIODIC NONUNIFORM 

SAMPLING.  

The nonuniform sampling process converts a continuous 
analogue signal x(t)∈L2-space into its discrete representation, 
the architecture of periodic nonuniform sampling system is 
shown in figure 1.  

Let ai(t) as one of s nonuniform sample sequences,  
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Where, T is the sampling period, τ is sequence separation. 
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and the corresponding spectra is given by 
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In order to reconstruct x(t) from these samples 
y[n]( y[n]=[  y0[n], y1[n],…,ys-1[n]]), it is assumed that x(t) lies 
in a subspace V(φ)of L2 . In this paper, we define that the V(φ) 
are generated by m space functions φ(t) 
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We can represent any x(t)∈V(φ) as follow 
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The only restriction on the choice of the function 
train{φp(t)}  is for guaranteeing a unique stable representation 
of any signal in V(φ) by  sequence {rp[n]}, so the generators 
φ(t) must form a Riesz basis of L2. In other words, there exist 
two constants 0α > andβ < ∞ , such that: 
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• is L2 norm. 

The above-mentioned subspace V(φ) is a single space, the 
more interesting aspect we are considering is that x(t) lies in a 

union of subspaces ( )pV ϕ∪ (0≤p≤m-1) 

( ) ( )pVx t ϕ∈∪  

In Fourier domain, (4) can be represented as follow: 
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Where, RP(ω) is the discrete-time Fourier transform of 
rp[n], ψp(ω) is the Fourier transform of φp(t). 

We can obtain the DTFT of the i-th channel samples[ ]
i

y n  

by (3) and (5): 
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Where, the fact that the ( )
p

R ω  is 2π -periodic. 

An appropriate matrix represent of (7) is given by: 

( ) ( ) ( )Y H Rω ω ω=              (8) 

Where,      0 1 1( ) ( ( ), ( ), ( )) 'sY Y Y Yω ω ω ω−= ⋯  

 
0 1 1( ) ( ( ), ( ), ( )) 'mR R R Rω ω ω ω−= ⋯  
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Our aim is to obtain values of R(ω). The method of 
reconstruction is to solve equation (6). 

III.  RECONSTRUCTION MODE  

The approach in this paper is to recovery sampled signals 
in two steps. First, we use the generalized inverse( )H ω− to 
find ri[n] (0≤i≤m-1) ; second, an interpolator is employed to 
achieve the complete reconstruction of sampled signal.. 

We define the function as follow: 
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Where, ˆ [ ]iy n  is coefficient that is obtained via sampling 

the reconstructed continuous time signal.  

Again by Parseval we have: 
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Where, ( )iY ω and ˆ ( )iY ω  is the DTFT of [ ]iy n  and 

ˆ [ ]iy n  respectively. ( )H denotes the Hermitian conjugate. 
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Where, , ( )p jH ω−  is the pjth element of matrix ( )H ω− . 

A matrix represent of (8) is given by: 
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Substitute (9) into (7), we have: 
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When the value of the equation (17) is minimum, the 

generalized inverse can be attained by  
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As soon as the r[n] is obtained, we can have the recovered 

x(t) through an interpolator. The TN is defined as the 
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oversampling periodic that satisfy /NT T M= , we can rewrite 
(3) as follow: 
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Upsampling the sequence (x[nTN]:n∈Z) by factor of M, 
the dth sub-sequence is given by  
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The DTFT of (10) is  
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Finally, we can have the reconstructed signals in Fourier 
domain 
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IV. SIMULATION  

In the section, we will validate the reconstruction 
algorithm in MATLAB. We design a sampling system that the 
sampling channels are s=2. The corresponding nonuniform 

sample sequences in Fig.1 are  0( ) ( )a t t nTδ= −  

and 1( ) ( )a t t nTδ τ= − − , we define / 3Tτ =  that is the 

sequence separation between two interleaved uniform sample 

sequences.  The generate functions 0 ( )tϕ and 1( )tϕ  are 

given as follow: 
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Where, T is the sampling period. 

We suppose that the input multi-band signal  

8 87
( ) sin( 10 ) sin( 10 )

3
x t t tπ π= × + ×

   (21) 
and the sampling period T=1/108. Fig 2 shows the conclusion 
of simulation. The real lines denote the reconstructed signals 
and the dashes are the imaginary signals. Fig 2a and Fig 2b 
show those signals in the first channel and the second channel 
respectively. Obviously, we can observe that the imaginary 
signals in Fig 2a and Fig 2b are restrained successfully from 
Fig 2c. By comparing Fig 2c and Fig 2d, the input multi-band 

signal x(t) can be recovered completely by using the proposed 
reconstruction method in this paper.  
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a. First channel signal           b. Second channel signal 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-7

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

times(s)

A
m

pl
itu

de
(v

)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x 10
-7

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

times(s)

A
m

pl
itu

de
(v

)

 
c. Reconstructed signal          d. Original signal 

FIGURE II. THE SAMPLING SYSTEM SIMULATION. 

V. CONCLUSION  

In this paper, we use a general framework to treat sampling 
of multi-band signal. Our interest is that focused on how to 
reconstruct signal completely. The latter focuses on using 
generalized inverse to obtain ri[n] (0≤i≤m-1). We showed that 
by using a interpolator to gain the complete multi-band signal 
x(t) from r[n]. Finally, the simulation proved the method we 
proposed is feasible. 
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