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Abstract—Difference equation isa kind of important tool to study
the rule of natural phenomena. In this paper, we discuss several
specific solutions of a class of second order difference equation
with boundary conditions.
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l. INTRODUCTION

Difference equations is akind of important tool to study the
rule of natural phenomena, such as, physica problems arising
in a wide variety of agpplications. Cheng and Cho [3]
investigated the following second order difference equations

Ax(k-1) + p(k)x(k) =0,
where p(k) is a red valued function defined on a set of the
natural numbers.

Motivated by theresultsgivenin[1, 2, 3, 4, 5], in this paper,

we discuss speciffc solutions of the following second order
difference equations for k{12,---N}

Nx(k —1) + p(k)x(k) =0, @
satisfying
X(0) =0,x(N +1) =0,
or
X(0) + ox(1) =0, X(N +1) + AX(N) =0,
or

x(0) + ox(1) = 0, x(2m) + Ax(2m) = 0, x(4m+1) + &(4m) = 0.

Il.  MAIN RESULTS
Throughout this paper, let n, m be natural numbers,

In,m :{n’n+]"”’m}
Proposition 1. Let N = 2m+1;

0 KOl
p(k) ={2/(m+1), k=m+1, @
0, KOl
and

K, KOl

X(k) i {Zm -k+2, KOl pene ¥
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Then (3) is the specific solution of second order difference
equation (1).

Proof. From (2) and (3), we have

D2x(m)
x(m+1)
_ x(m+ 2) = 2x(m+1) + x(m)

x(m+1)
_Mm-2(m+)+m

m+1

=2 =-p(m+1) (4)

- m+1
Since A2x(k —1) / x(k) =0=- p(k) for
KOl UKDl s (3) is a specific solution of (1) with

X(0) =0,x(N +1) =0-
Proposition 2. Let N =2m-

0, kKOl
p(k) =3 (2m+1)/ m(m+1), k=m+1,
O, k[||m+2,N,

(®)

and
K,
X(k) = {(m+1)(2m—k+1)/m,
Then (6) isthe specific solution of (1).
Proof. From (5) and (6), we obtain that

KO g e ©
k D I m+1,N+1*

A*x(m)

x(m+1)

_ X(m+2) = 2x(m+1) + x(m)
- x(m+1)

(M =1)/m-2(m+1)+m
- m+1
_m?=1-2m(m+1) + m’
- m(m+1)
__2m+1
T m+1

=-p(m+1). )



Since A*x(k-1)/ x(k) =0=—p(k) for
KOl UKDl .5, (6) is a specific solution of (1) such
that

x(0)=0,x(N+1 =0.

Proposition 3. Let N =2m+1-

0, KOlg
8
(k)= N+1+N/1+Na+2m/la‘ K=m+l (8)

(m+1+mo)(m+1+mAi)
0‘ k[||m+2,N,
and
1+ @1+ 0)(k-1), KO lg s ©)
X(k) =4 (m+1+mo)[2m+1+1/ (1+ 1) —K] "
! DIm+1N+1.
m+1/ (1+ ) ,

Then (9) is the specific solution of (1) with

X(0) +ox(D) =0,x(N +2) = Ax(N) =0.
Proof. From (8) and (9), we conclude
A*x(m)
x(m+1)
_ X(m+2) =2x(m+1) + x(m)
- x(m+1)
_ X(M+2) —x(m+1) - (x(m+1) —x(m))
- x(m+1)
_ 1+o + m+1+mo
" m+l+mo (m+1/ (1+A)(m+1+mo)
_ 1+o0 1+ A
S m+ltmo m+l+mi
1+ o)(m+1+mA) + 1+ A)(m+1+mo)
(m+1+mo)(m+1+mi)
_2m+2+(2m+)A +(2m+1)o+2mic
- (M+1+mo)(m+1+ml)
_N+1+NA+No+2mio _
T (M+l+mo)(m+1+md)
Since
A?x(k=1)/x(k) =0=-p(k) fork O, , UkOl ., v
(9) is aspecific solution of (1) with

X(0)+ox(@ =0. xX(N+1)+Ax(N)=0.
Proposition 4. Let N = 2m»

-p(m+1) (10)

0, kO lomet,
o = NFLENA+ N+ (N -1 do cem 11)
(m+(m-1)o)(m+1+nmA)
0 KOl
and
1+1+0)(k-1) KOlgp
K0 =1 (MLt 0) - )M+ @D K) (12

m+1/(@1+A)

Then (12) isthe solution of (1) with

x(0)+ox(1)=0,x(N+1)+Ax(N)=0
Proof. Using (11) and (12), we have

A?x(m-1)
CXm)
__ x(M+1) —2x(m) +(m-1)
x(m)
_ _X(m+1) = x(m) - (x(m) —x(m-1))
) x(m)
mil+o)-o l+0

:(m+1/(1+)l))(m(1+a)—a) m(l+o)-o
_ 1l+0 + 1+ 4
- m+(m-)o m+1+mi
_ @+o)(m+1+ml)+ 1+ A)(m+(m-1o)
(Mm+(M-Do)(m+1+mA)
_2m+1+ 2ml +2mo +(2m-) Ao
(m+(m-1)o)(m+1m)
= p(m), (13)
A?x(k -1) / x(k) = 0= —p(K) for
kOl ,UkOI .,y (12) isaspecific solution of (1) with
X(0)+ox(1) =0,x(N +1) + Ax(N) =0.
Proposition 5. Let

O, k g ID,m—l,
2m+1+2ml + 2mo + (2m-DAo K=m (14)
(m+(m+1)o)(m+1+nmA)
p(k) = o) kO |m+1,3m—1,

2m+2mA +2m@+2mi8+A -6

k =3m,
(m+md+1)(m+mi -1)
0, kO |3m+1,4m’
and
1+ 1+ o)(k-1), KDlg (15)
0= (m1+0) - o)(em+1/ @1+ 4) = k) «ol,...

m+1/(1+A)
(m(1+a)—a)(1/(1+/1)‘m)X(4m+i_
(m+1/ 1+ A)(m+1/ (1+6)) 1+6
Then (15) is the solution of (1) with

x(0) + ox(1) = 0, x(2m+1) + Ax(2m) = 0, x(4m+1) + &x(4m) =0

K, KDl ama

Proof. Using (14) and (15), We have

_ A*x(m-1) _2m+1+ 2ml +2mo +(2m-) Ao - p(m), (16)
x(m) (m+(m-Do)(m+1+ml)
_A’x(3m-1)
x(3m)
__X(3m+1) - 2x(3m) + x(3m-1)
X(3m)



_ _ X(Bm+1) —x(3m) - (x(3m) - x(3m-1))

- X(3m)

_1+6 + 1+1

T m+mA+l m+mi-1
_@+6)(m+mi =1+ 1+ A)(m+mb+1)

- (m+m@+H(m+nmA -1)

_2m+2ml +2mg+2mif+ A1 -6

- (Mm+m@+)(m+mi -1)

= p(3m), (17)

Since

A*x(k=1)/ x(k) =0=-p(k)
for KOl Ul ama UKDl 4, (15) is a specific

solution of (1) with
x(0) +ox(@) =0,x(2m+1) + Ax(2m) = 0, x(4m+1) + Gx(4m) =0

I, SUMMARY

Difference equation is a kind of important tool to study the
rule of natural phenomena. In this paper, we discuss severa
specific solutions of a class of second order difference equation
with boundary conditions.
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