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Abstract —In this paper, we establish a class of new nonlinear Definition 1. ([2])
weakly singular integral inequality, which is solved by adopting Let g >0 be a real number and 0 <d.<We say that a
novel analysis techniques, such as: differential and integration, functionyy : R* R satisfies a condition (q), if
inverse function, and explicit bounds for the unknown functions -
aregiven clearly. - -
g y e [wu)] < Rt)w(e ™ *u®), DudR*,tO[0,T), )
Keywords-integral inequality; weakly singular integral kernel; where R(t) is a continuous, nonnegative function.
iterated integrals; analysistechnique; estimation
Lemmal. ([2])

I.. INTRODUCTION | . Letto't'ﬁDR+'Letﬁ>]/2'then 28-1>0 and
In 2011, Abdeldaim et al. [1] studied a new integral
inequality of Gronwall-Bellman-Pachpatte type p2 2%
J:O(t—s) e? dss 5T (281 (5)

uO < U+ [ 19U + [ HD[UD + [ g(duHagddnes D S

- > 1 i 0 _ _
To avoid the shortcoming of these results, Medved [2] 2$-1>0 rp)= _L r’ledr
presented a new method to discuss nonlinear singular integigl, tion
inequalities of Henry type and their Bihari version as follows: '

is the gamma

. Lemma 2. (Discrete Jensen inequality [3])
ut) < a(t) + IO (t —s)”™* f(s)w(u(s))ds )

Let ALA A be nonnegative real numbers, r>1 is a
and the estimates of solutions are given, respectively. e

real numbers, and n is a natural number. Then
Motivated by the results given in [1-5], in this paper, we

discuss a new retarded nonlinear integral inequality (Act Ao+ A) <snTHA + A+ + A). (6)
u <a) + [ (t=9°7 F(SwUNUS + [ (=0 gD w (UD)u(r) Theg;ggols'e that
+[ (1 =95 N Hw(u(§) de]drlds @) b),f(¢),gt)ICA,R.), gOCR, R, ){=123)"

for all . The inequality (3) consist of iterated ith _ , for  u>0. Let
tOty, J) quality 3) ?(0)=0,

@)>0
integral, and weakly singular integral kernel be involved in _ , satisfy the condition (4) with q=2.
each layer. Under several practical assumptions, the inequalilgi > 126 - 12) Wy, W,

is solved through rigorous analysis, and explicit bounds for thé u(t) satisfies (3), then

unknown functions are given clearly. Moreover, an example is

presented to show the usefulness of our results. o <d QF QX QYA ONN v2 [t [t,.T), @)
. MAIN RESULT where
Throughout this paper, R denotes the set of real numbergt) =Q3[QZ(QI(A(t))+.[t K3h(s)ds)+f K,g(9)ds] +j‘t K, f (s)ds,
R,=[0,+0], I= [te,d); C(M,S) denotes the class of continuously ’ ’ ’
differentiable functions defined on ddtwith range inthe s&& Q,(2 = :_Os Zy > 0,20 (z,,+), (8)
C(M,9 denotes the class of continuously functions defined on % Wy(S) B
set M with range in the se§ ,8'(t) denotes the derived Qz(z):j;%,zo>o,zﬂ(zo,+w), 9)

Zw ’ZO > O,ZD (ZO'+°°)' (10)

function of a function sr + .
t -

F i ﬂb(f) ivi [ It it 93(2)_";" w,(Q,1(Q2'(9))

or convenience, before giving our main results, we cite . .

some useful lemmas and definitions in the discussion of oft"® Q;1,Q;t,Q;t are inverse functions Ole,QZ,Q3’

proof as follows: respectively,
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A(t) = 2a2(t)'Kl = z_(zﬂl _1) , Kz = r(zﬂz _l),K3

_X(28,-))
451 451 - !

4132
f(s) = f2(9R (5)€*,3(7) = g*(7)R, (7)™, (&) = h* ()R (&)
and R, (t), R, (t), R;(t) are defined by (4], is the largest
real number sucb that _
T, =Max{t 01, A(t) 0 DomQ;", Q;{ A(t)} 0 DomQ;",
Q¥ QA )} U Do Y.

Proof. Using the Cauchy-Schwarz inequality, we obtain

from (3) that
ut < a(®) + [ (t-9°7e f(9e " w(Uu(S)
+[(s-0P7e g wu(m)u(r)
+[ (-9 e N e wy(u(§) de]drlds
<y +{[(1-9 e g T [, 9w ()
[ (s-n# 2 dn g [ e™ g @wi(un)u(r)
Hf - tedg:
(11)

o [ 8w §)dq 72dr 21202, DL

Using discrete Jensen inequality (3) with= 2,r = 2, we
obtain from (11) that

ui(t) s2a%(t) +2[ [ (t-9 e asl[[ f (e wf (U()[2u* (9
+ 2[[{: (s-1) 2,-2 ledT][E e—ngz (T)Wg (u(T))[2u2 @)

+2] (- O™ e agl [ e 5wy &) o) aos)+ (12)

for all t [J1.Using the condition (4) in definition 1 and (5) in

Lemma 1, from (12) we obtain that
u®(t) < 2a*(t) +2[24% res -1)][f; f2(9R(Jw, (e *u*(s)[2u*(s)

+225- @B, D[ S*(R(Awe (T2 (1)
+2 226, 1)

o I;hz( § R § wf e ¥u §) dd] dr]]ds]
< 2a%(t) + 4[24i;t @B, -1
([ (IR (e =u*()u’(9e™
+2 5T (25, -]
X[ G (DR W (e (D) (20 (e +[4%r(2,33 ~1)]
! l:hz(é) R{Hw (e Xu(d)dé]ldr]lds], OtO1.  (13)

Let v(t) = u2(t)e—21’We have from (13)

V(D) < A+ K, [ TOWMSIUS) * K, [ Gow (r)v(7)

+ K[ (&) (v(&)dédrds, Ot D1, (14)
where
Att)=2a%(t), , _ZT@-D ¢ _T@R-D) | _ZTEA-Y
17 4B y N2 251 Ky = 7 ;

f (s) = f*(s)R (s)e™, (1) = g* (MR, (1)e”,
h(&) =h*(OR,(&) -

Let 2(t) denote the function on the right-hand side of (14),

which is a positive and nondecreasing function jonFrom

(14), we have

v(t) < z(t), At) < z(t), Ot O | (15)
Differentiating z(t) with respect tq, using (15) we have

Z()< AW+ K, TOWEDIZD + K, @ w=n)0)

+K [ h(Ew(2(9)de]dr]
= A(t) + K, f t)w, (z(t)z, ), 0t 01,
Where
2,(0) = 200 + K, |, GO)w(An)[2(0) + K, A@w(2&)deldr.
z, is a positive and nondecreasing functionjon

z,(t,) = z(t,), z(t) < z (t), Ot O 1. (18)
Differentiating Zl(t) with respect td, using (16) and (18)

(16)

17

Hence,

we have

z (1) < A +K, FOw(z,0)z(t)
+HKFOWLZONZO + K, [ hOW, (2 ()de]

= A @)+ K, Ow(z10))z0) + K,GOW,(z )2 1), (19)
foralltO1,and
t —~
2,(0) = 2.0+ K; | h(EWs(z(£)dé. (20)

Hence, ., is a positive and nondecreasing function on I,

Z,

z,(t,) = z(t,), z(t) < z,(t) , Ot O1 . (21)
Differentiating z,(t) with respect td, using (19) and (21)
2

we have

z, (1) = 2 (1) + K,h)wy(z, (1))
< A1) +K, T (OW,(2, )2, (1) + K,GOW,(z, 1)z, (1)
+ K, 30w, (2,0)2, () + Kh t)w, (2, (1)),

ttol.

SinceW ;. are nondecreasing functions dnwe have
3172

from (22)

(22)
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) AW K. )z, ) "azW) wi(z(t)) positive and nondecreasing function[ty) T] .From (28), we

Wy(2,(1)) Wa(zz(t)) Wy(z () have
KGOz g0 + KA 2,t) = Q.2 + [ K.5(90s
AO Ly Froz oz 0) =Q,(Q,(AT) + [ K(9)ds) + [ K,F(s)s (29)
Tw(AD) T wa(z, (1) z,(t) < Q;(z,(t), Ot O[t,, T1. (30)
+K, 1)z, () ngzgg +K ), DO (23) Differentiating 2,(t) with respect tot, using (30) we have
where we used the o
_ _ PR UL R CA0))
relation A(t) < z(t) < z,(t) < z,(t) .Integrating both sides U= 0T 055 o)
of the above inequalit?/ fro~na tot, st &bt(i;? <K, ) V\A\:l((séll((giii4iiiiii Otoft,, - (31)
1 2 2 4
Q,(z,(1)) = Q,(A)) +L K. f(9)z(9) w(2,(9) ds From (31), we have
Lo = ) 4oy [ F AONACKCRCAV))
+[ K, §(9)2, (522229 4o 4 [ K h(s)ds ar/ 211 VT2 e <K, f(t), OtO[ty, T]- (32)
J KBz (97 2 0 st [ K W@ @0 t) ol
<o (A(F))+f K h(s)ds+I K f(s)zz(s) Wiziz; ds e Igt';(tegirna;[mgt both sides of the above inequality frgnott,
A CIACK: E gi @D 02,020y + [ K, T(s)s, D01, T (33)

for t, <t<T <T,,Tis chosen arbitrarily, wher€, is  whereQ;is defined by (10).

defined by (8). Letz,(t) denote the function on the right- From (15), (18), (21), (25), _(130) and (3?3 W_? have
hand side of (24), which is a positive and nondecreasmg()‘z(t)<Zi(t)<22(t)<Q (z5(1) = Q.7 (Q (2, (1))

function on[t,, T]. From (24), we have < Qi Q{1 Q;{QQ,(Q,(A(T)) +L K;h(s)ds)
2(t) =AM +[ Kfsps 20 <0 =M).  (29) +[ K, 8908+ [ K, T pagyy OOt T1- (34)
Differentiating 2,(t) with respect tot, using (25) we have SinceT is chosen arbitrarily, we have
3
Wz , . ~ W, (2, (1)) x st of QE{Qs[Qz(Ql(A(t)HL K3h(s)ds)
21 =K FOz,0 = S+ K020 ‘s - 35)
w(z,0) " W, (2, (1)) +[ K G(9ds] + [ K, 1 3 s,
~ -1 0 o
< KJ(I)Q?(Q(I))W for all t [t,, T,]. In view of V(t) =u?(t)e™, we can
3W l(sz =) 6) obtain (7).
= -1 234 , 26
+ KZQ(t)Ql (23(t)) W3(Q;l(23(t))) “l SJMMARY
for all t O[t,, T] .Sincew, /W, Q' z are positive and In this paper, we establish a class of new nonlinear weakly
0’ 2P78 L TS singular integral inequality. By adopting novel analysis
nondecreasing functions (fi]o,T] ,from (26) we have technique_s, we _have optained explicit bounds for the unknown
2, ()W, (Q5(2,(1))) CK.G0+K F(t) w,(Q(z,1) functions in the inequality.
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inequality fromt, to t, we obtain that
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