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Abstract—Dynamic consolidation of virtual machines (VMs) is an 
effective way to improve the utilization of resources and energy 
efficiency in grid computing. We propose a novel load balancing 
approach that combines the Group Method of Data Handling 
(GMDH) based on Geneticalgorithmfor host overload prediction 
and the Minimum Migration Time (MMT) policy for VM 
selection. The GA-GMDH algorithm could predict the actual host 
load in each consecutive future time interval. We evaluate our 
method using the workload traces of Google Cluster data. Our 
proposed algorithms significantly reduce energy consumption, 
while ensuring a high level of adherence to the Service Level 
Agreements (SLAs). 
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I. INTRODUCTION 
The focus of this work is on energy and performance 

efficient resource management strategies that can be applied in 
a virtualized data center by a Cloud provider (e.g. Google App 
Engine). Effective host overload prediction is conducive to 
dynamic resource provisioning [1], virtual machine migration 
[2], server consolidation and energy management. Therefore, 
accurate host overload prediction is essential for load balancing. 
In this paper, we propose an effective host overload prediction 
method with comparatively less prediction errors and 
acceptable prediction interval length. The main idea of our 
approach is to use GMDH[3]method based on genetic 
algorithm for host overload prediction and apply Minimum 
Migration Time (MMT) policy [4] to the VM selection stage. 
We evaluate the proposed algorithms by extensive simulation 
using the Cloud Sim [5] toolkit and one month's worth of 
accounting records from the Google Cluster data.  

Our main contributions are three-fold: 

1. We introduce a GA-GMDH algorithm, which predict 
the actual host load for a future time interval rather than the 
mean load only. 

2. We combine the GA-GMDH and MMT approaches 
for energy efficient dynamic consolidation of VMs in the 
context of Cloud Computing. 

3. An extensive simulation-based evaluation and 
performance analysis of the proposed algorithms.  

The remainder of the paper is organized as follows. In 
Section 2 we discuss the related work. In Sections 3 we present 

a thorough analysis of the VM consolidation problem. We 
propose our adaptive heuristics algorithms in Section 4, 
continuing with an evaluation and analysis of the obtained 
experiment results in Section 5. We discuss future research 
directions and conclude the paper in Section 6. 

II. RELATED WORK 
Many efforts [6][7][8] have been made in host load 

prediction in Grids or HPC systems. C. Dabrowski et al. [6] 
perform the host overload prediction by leveraging the 
Markov model via a simulated environment. S. Akioka, et al. 
[7] combine the Markov model and seasonal analysis to 
predict the host load for one-step ahead in a computational 
Grid. Y. Wu et al. [8] use hybrid model for multi-step ahead 
host overload prediction, which combines the Auto Regressive 
(AR) model and Kalman filter.  

To predict the host load in the Cloud, B. Guenter [9] 
proposed a simple linear prediction scheme which predicts the 
host load for the next time. Q. Zhang [10] used the Auto-
Regressive Integrated Moving Average (ARIMA) model to 
predict the host load. In [9], the ARIMA model could predict 
the load over a time window H by iterated the one step 
prediction. In [11], D. Yang et al. proposed a multi-step-ahead 
prediction method for CPU load.  

S. Di et al. [12] firstly use the Bayesian model to predict the 
host load in the Cloud. Srikantaiah et al. [13] have studied the 
problem of request scheduling for multi-tier web applications 
in virtualized heterogeneous systems to minimize energy 
consumption, while meeting performance requirements. 

III. THE VM CONSOLIDATION PROBLEM 
VM consolidation is the key problem that IaaS provider or 

data center operators often face. They need develop 
appropriate resource management and scheduling strategies to 
meet SLAs, improve load balancing capability and reduce 
energy consumption. Before the VM selection stage, we need 
know which host is overloaded. Then the next step is to select 
particular VMs to migrate from this host. 

We define that there are n homogeneous hosts, and the 
capacity of each host is ܣ௛ . Although VMs experience 
variable workloads, the maximum CPU capacity that can be 
allocated to a VMis ܣ௩ . Therefore, the maximum number of 
VMs allocated to a host when they demand their maximum 
CPU capacity is m = ஺೓஺ೡThe total number of VMs is nm. VMs 
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can be migrated between hosts using live migration with a 
migration time ݐ௠. Obviously, SLA violation occurs when the 
total demand for the CPU performance exceeds the available 
CPU capacity ܣ௛ . The cost of power is ܥ௣ , and the cost of 
SLA violation per unit of time is ܥ௩. Without loss of generality, 
we can define ܥ௣ = 1 and ܥ௩ = s, where s א ܴା. We assume 
that when a host is idle, i.e., there are no allocated VMs, it is 
switched off and consumes no power, or switched to the sleep 
mode with negligible power consumption. We call non-idle 
hosts active. The total cost C is defined as follows: ܥ = ∑ ௣ܥ) ∑ ܽ௧௜௡௜ୀ଴ ൅ ௩ܥ ∑ ௧௝௡௝ୀ଴ݒ )௧்ୀ௧బ (1) 

whereݐ଴ is the initial time; T is the total time; ܽ௧௜ א ሼ0,1ሽ 
indicating whether the host iis active at the time t; ݒ௧௝ א ሼ0,1ሽ 
indicating whether the host j is experiencing an SLA violation 
at the timet. The problem is to determine what time, which 
VMs and where should be migrated to minimize the total cost 
C. 

IV. THE ALGORITHMS FOR VM CONSOLIDATION 
We split the problem of dynamic VM consolidation into 

four parts: (1) determining when a host is considered as being 
overloaded to migrate of one or more VMs from this host; (2) 
determining when a host is considered as being under loaded to 
migrate all VMs from this host and switch the host to the sleep 
mode; (3) selection of VMs that should be migrated from an 
overloaded host; and (4) finding a new placement of the VMs 
selected for migration from either the overloaded or under 
loaded hosts. 

A. The Overview of GA-GMDH 
The GMDH network is a feed-forward network that can be 

represented as a set of neurons, of which different pairs in 
each layer are connected through a quadratic polynomial and 
thereby produce new neurons in the next layer. The 
coefficients of the neuron are estimated using the Least 
Squares Method. The most popular base function used in 
GMDH is the gradually complicated Kolmogorov-Gabor 
polynomial: 

ොݕ = ܽ଴ ൅ ෍ ܽ௜ݔ௜௡
௜ୀଵ ൅ ෍ ෍ ܽ௜௝ݔ௜ݔ௝௡

௝ୀଵ
௡

௜ୀଵ  ൅ ∑ ∑ ∑ ܽ௜௝௞ݔ௜ݔ௝ݔ௞௡௞ୀଵ௡௝ୀଵ௡௜ୀଵ ൅  (2)ڮ
where n is the number of the data in the dataset; A = (a଴; aଵ ; aଶ ; …) and X = (x୧ ; x୨ ; x୩ ; …) are the vectors of the 

coefficients and input variables of the multi-input single-
output system; and yො  is the output of an individual host. 
However, in the GMDH algorithm, the infinite Kolmogorov-
Gabor polynomial is estimated by a cascade of a second order 
polynomials using only pairs of variables in the form of ݕො = ܽ଴ ൅ ܽଵݔ௜ ൅ ܽଶݔ௝ ൅ ܽଷݔ௜ݔ௝ ൅ ܽସݔ௜ଶ ൅ܽହݔ௝ଶ                          (3) 

The basic form of the GMDH algorithm has several 
limitations, e.g., each host can only have two input variables, 
and the neurons in each layer are only connected to the host in 
its adjacent layer. Therefore, we choose GA-GMDH to 
remove these restrictions, as each neuron in GA-GMDH can 
have a different number of input variables as well as a 
different order of polynomial. 

The representation of the GA-GMDH network should 
contain the number of input variables for each neuron, the best 
type of polynomial for each neuron, and which input variables 
should be chosen for each neuron. Therefore, the chromosome 
for each individual should contain three subchromosomes. 
Each subchromosome in our algorithm is represented as a 
string of integer digits. 

B. VM Selection 
Once the system get the predicted load, it has been decided 

that a host is overloaded or under loaded, the next step is to 
select particular VMs to migrate from this host. In this section 
we propose two policies for VM selection.  

1) The minimum migration time policy: The Minimum 
Migration Time (MMT) policy migrates a VM v that requires 
the minimum time to complete a migration relatively to the 
other VMs allocated to the host. The migration time is 
estimated as the amount of RAM utilized by the VM divided 
by the spare network bandwidth available for the host j. Let ܒ܄ 
be a set of VMs currently allocated to the host j. The MMT 
policy finds a VM v that satisfies conditions formalized in v א ௝ܸ|ܽ׊ א ௝ܸ, ோ஺ெೠ(௩)ோ்ೕ ൑ ோ஺ெೠ(௔)ோ்ೕ (4) 

whereܴܯܣ௨(ܽ) is the amount of RAM currently utilized by 
the VM a; andܰܧ ௝ܶ  is the sparenetwork bandwidth available 
for the host j. 

2) The random selection policy (RSP): The Random 
Selection Policy (RSP) selects a VM to be migrated according 
to a uniformly distributed discrete random variable X ࢁ؝(૙,  ࢐allocated to aࢂ whose values index a set of VMs ,(|࢐ࢂ|
host j. 

V. PERFORMANCE EVALUATION 

A. Experiment Setup 
We use CloudSim toolkit [5] as the simulation platform. 

We have simulated a data center that comprises 1000 
heterogeneous hosts. In order to compare the efficiency of the 
algorithms we use three metrics to evaluate their performance. 
The first metric is the total energy consumption(EC). The 
second metric is the level of SLA violations(SLAV). The last 
one is the number of VM migrations.  

B. Host Overload Prediction 
The accurate prediction of host load in a Cloud computing 

data center is very important to improve resource utilization, 
lower data center costs and ensure the job performance. We 
quantified the performance of actual load prediction with 
mean squared error(MSE).  
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