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Abstract —HMM models based on MFCC features are widely However, some researchers use neural network to simulate
used by researchers in Tibetan speech recognition. Although the speech recognition procedure([6,7] of brain, subject to gradient
shallow models of HMM are effective, they cannot reflect the diffusion, local optimum of learning and non-sparsity
speech perceptual mechanism in human being’s brain. In this constraint BP algorithm, traditional neural network are not
paper, we propose to apply sparse auto-encoder to learn deep very good at imitating the process of speech recognition.
features based on MFCC features for speech data. The deep . o

features not only simulate sparse touches signal of the auditory In recent years, deep learning overcomes training problems
nerve, and are significant to improve speech recognition accuracy Of BP algorithm and builds neural network with unsupervised
with HMM models. Experimental results show that the deep learning and sparsity constrain of hidden neurons[8,9]. Deep
features learned by sparse auto-encoder perform better on learning can reflect the mechanism of the signal processing in
Tibetan speech recognition than MFCC features and the deep brain, and it can learn the deeper and more abstract features

features learned by MLP. which represent the spatial pattern of brain nerve for input data.
So, in this work we applied a simple and effective approach,

Keywords-deep feature learning; sparse auto-encoder; tibetan  j e, sparse auto-encoder (SA), to learn deep features based on
speech recognition; MFCC features MFCC features to simulate how speech frequency signal is

translated into trigger signal of the auditory nerve. MFCC

representing auditory features of ear are converted into sparse
According to the knowledge of auditory phonetics,auditory nerve signals by sparse auto-encoder, and finally the

psycholinguistics and human ear structure, cochlea isutputs of sparse auto-encoder are fed into HMM models to

equivalent to a filter bank, and the filtering effect of thecomplete speech recognition.

cochlea is conducted on logarithmic frequency scale. An

important part of the cochlea is the basement membrane, Th_e rest of this paper i_s_ organizgd as follows. Section 2
above which is the organ of corti. It is the main organ o escribes speech recognition architecture based on deep

mechanical to neural transduction. The variation of fluid€atures learning. Section 3 introduces sparse auto-encoder
waves’ velocity in the cochlear can result in potentialmethOd briefly. Section 4 gives the acoustic modeling

changes on both sides of the hair cell membrane in the Orgﬁégorithm of Tibetan speech recognition based on deep

of corti, which can activate and suppress auditory nerve und xat(lejrrien?erlte;rgggitsInFinSaeIICtK\J/\?e csénc\:l}ll? d;?ﬁgrtaagfinag]:%éen
certain conditions. Then, the signals of auditory nerve arg P ' Y pap

transmitted into the brainstem for speech recognition [1].

In the research of speech recognition, because MFCC (Mel Il.  SPEECH RECOGNITION SYSTEM BASED ON DEEP
Frequency Ceptral Coefficient) features represent the human FEATURES LEARNING
auditory system's response to sound with respect to frequency The existing speech recognition systems based on MFCC

approximately and reflect human auditory characters, it iand HMM model adopt the framework as shown in Figure 1.
widely used as inputs for speech recognition models, most of }

which are Hidden Markov Model(HMM) models. In Tibetan Q Q Q Q
speech recognition, most researchers also apply this shallow OOt SOk Onmd B
modeling approach, for example, authors in [2,3,4] use 39-dim
MFCC to build HMM models of phone and syllable
recognition for Lhasa Tibetan. But the shallow models is a
simple structure which switch input signals to special issue
space[5]. Considering speech perception mechanism in braifl; ;e | - speec RECOGNITION SYSTEM BASED ON MFCC AND

the shallow speech recognition models do not have the ‘ HMM MODEL.

capability of simulating speech perception mechanism in brain,

the main of which is that it cannot simulate how frequency |n this system, MFCC features are viewed as input of
signal is converted into trigger signal of the auditory nerve. Se{MM model, and a separate model for each speech class is
the accuracy of the speech recognition system based @ilt, which belongs to shallow learning and cannot simulate
shallow learning can be improved further. the process of analyzing and explaining input data in brains.

I.  INTRODUCTION
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Another kind of speech recognition method uses artificial I1l. SPARSE AUTGENCODER
neural networks and HMM model, as shown in Figure 2(a). In this section, we will introduce the sparse auto-encoder

for deep feature learning. Sparse auto-encoder is an
unsupervised learning algorithm that setting the target values
to be equal to the inputs. We describe a single-layer sparse
auto-encoder shown as Figure 3, which includes input layer,
hidden layer and output layer.
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FIGURE Il. (a) SPEECH RECOGNITION SYSTEM BASED ON MFCC,
NEURAL NETWORK AND HMM. (b) SPEECH RECOGNITION SYSTEM
BASED ON MFCC, SA AND HMM FOR THE DEEP FEATURES
LEARNING.
FIGURE IV. A SPARSE AUTO-ENCODER WITH ONE HIDDEN

The system includes the input layer, hidden layers and LAYERS AND A SOFTMAX CLASSIFIER LAYER.

output layer with only the neighboring layers connected, and ) ] ] ) N
its layered structure is similar to the structure of our brain. But The input vector isy [][]°, and hidden variablé [1[]
traditional neural network training methods adopt backepresents deep features. The mapping relation between the
propagation algorithm, which uses iterative algorithm to trainnput layer and the hidden layer is as follows:
the entire network, initialize parameter randomly and calculate
the output, then modifies parameters of each layer according - e (€]

: . h=o(W"x+b"™)
to the difference between current output and real value until
the system converges. There are major drawbacks of the
training methods[10] . Firstly, it is sensitive to the initial value O'(t) = (1+ et )‘1 ) ) ) .
of parameters trapping in local optimum and over-fitting Where is the sigmoid function,
phenomenon easily. Secondly, the residual will become sWW® 00" is 5 weight matrix with N hidden units,
small while propagating to the top of the layer and gradient 0
diffusion will appear. Thirdly, because there are a largeh® N
number of neurons in our brains, certain sounds can activate
few neurons, so trigger signal of each layer should be Spargg_cons
But the BP neural network is not constrained to sparsity.

1)

is an encoding bias. The outpdt , i.e. the
truction of the inpdlt, is obtained by

&= @r @
In this paper, we introduce deep learning to obtain the deep x=o(W=h+b™) 2
features of the input speech data with greedy layer-wise
unsupervised pre-training from the bottom up (cognitive oo W@ qpohp is the decoding matrix and
process) and weight tuning from the top down (generation ) b
process).Deep learning method avoids falling into locaP™” 00" is an decoding bias. An“ over-complete’
optimum, gradient diffusion and non-sparsity. Deep learningionlinear features (greater than the number of input) are
can get generation process and cognitive process to agreelédarned by minimizing the reconstruction error of the
ensure the top layer (output layer) recovering the bottom laydikelihood function with a sparsity constraint:
as accurately as possible. In our paper, we adopt a simple and
effective method of deep learning, sparse auto-encoder[11], to A leam o N .
learn the deep features, simulate perceptive signal of the L(XIX)ZEZMW =X [F+BY. KL (o |1p; .
auditory nerve on speech and gather information into HMM !
models to recognize speech class.

©)

Figure 2(b) shows the speech recognition system Where'g is the weight of sparsity penaltf) is the
framework based on sparse auto-encoder, where sparse auto- . 1o h
encoder is used as the deep feature detectors, and each Sp%%%fpage activation oh P ‘Ezm[ i

class verifier is modeled by a three-state left-to-right HMM. is the average

activation of over the training data, and the Kullback-Leibler
divergence is written
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AN yoj 1-p letter speech data are clean audio, and digital speech was
KL(pllp)=p IOg;Jr (-p) IOgl_[)_ recorded with background noise for audio-video data.
, @

All original speech data is sampled to 8 KHz. 39 MFCC
patures of each observation frame were extracted using a 32
in sparse auto-encoder to output a vector of speech cla; window with 10 ms overlaps. 39 MFCCs are composed of

posterior probability, which is treated as observation and is fed dg/lrFt'Cr:n%S dpelﬁsattheesengr%;eogﬁ'tgeergcgggrtgﬁ'(; witﬁsﬁgogdég
into a HMM. The vector of speech class posterior probabilitxglﬁ : vatives. Sp uto- V'

In our paper, we add a softmax classifier on the top IayeT

maximize the separation between speech classes in the out gt Ialyer nodgzs agd only otne h|ddden Iay(ir._ Mligohasd 50.
space. This separation leads to improved discrimination by €n layer nodes. sparse auto-encoder contains nodes in

GMM model, which describes the output space associatetidden layer, where the weight of sparsity penﬁtys, the

with each HMM state[12]. A sparse auto-encoder with ong,o,, activation® =0.1, and the weight decay parameter for
hidden layers and a softmax classifier layer is shown in Figure ) T

4.The parameters for a sparse auto-encoder are obtained gk propagation optimizatio =0.003. MLP and sparse
greedy layer-wise training. This method consists of two phas@uto-encoder select sigmoid type nodes in the hidden layers.
pre-training and fine-tuning. In pre-training, we use unlabeledhe recognition accuracy on test set using three speech
data samples to train the sparse auto-encoder for parametéggognition systems, i.e. MFCC and HMM; MFCC, neural
WO W@ p® p® with unsupervised methods. After the network and HMM; MFCC, SA and HMM.

phase of pre-training is complete, back-propagation can be tagLg . RECOGNITION ACCURACY RATE ON THREE SPEECH
used to improve the results by tuning the parameters at the RECOGNITION SYSTEMS
same time with supervised manner based on labeled data . Speech recognition systems |34 phones 10 digits
MFCC and HMM 70.6% 43.75%
IV. THE ACOUSTIC MODELING ALGORITHM OFTIBETAN MECC. MLP and FiMIM 05 69% =00

SPEECH RECOGNITION BASED ON DEEP FEATURE LEARNING MFECC. SA and HMM 100% 52.5%

The learning algorithm of deep feature learning and speech As we can see from the table, all the models trained on the
recognition modeling is summarized as follows. clean audio data (34 phones) have higher recognition accuracy

. than the models trained on audio data extracted from audio-
oa Train a sparse auto-encc_)der on the MFCC features Qfgeq data. Because we should take into account that noise of
input speech datl with unsupervised methods, and then feedrecorded audio-video files is stronger than that of audio files.

the speech datt into trained sparse auto-encoder to obtain In the table, new features obtained by MLP based on

the output of the hidden layer as the deep feaﬁl%)eof input  MFCC features have better performance on speech recognition
speech datd . than MFCC features. We observed that recognition accuracy
increases by 25% on 34 phones data sets and 6.25% on 10

Tibetan digits. We can also see from the table that recognition
accuracy on the deep features learned by sparse auto-encoder
is higher than that by MLP. The experiments suggests that

c. Fine-tune the sparse auto-encoder with one hiddesompared with MFCC features, neural network simulates the
layer and a softmax classifier layer using labeled speegbrocess of braind  speech recognition and improves
datdV . recognition accuracy. However, traditional neural networks
like MLP have many defects such as gradient diffusion, non-
sparsity and so on. In this paper, we apply sparse auto-encoder
based on MFCC features to learn features deeply. The features
ahyracted represent the sparse trigger signal of the auditory
perve more approximately and actually improve speech
cognition accuracy for HMM models.

1 . .
b. Feed the featureE‘()as the input into a softmax
classifier and train them to map the speech classes.

d. Output the well-trained sparse auto-encoder.

e. Feed speech dat¥ into the well-trained sparse auto-
encoder and get the speech class posterior probabilities,
then we put posterior probabilities as input observation fo
HMM models, and train the models of speech classes {&
perform speech recognition. VI. CONCLUSION

V. EXPERIMENTAL RESULTS In this paper, we use sparse auto-encoder to extract the
Agep features for Tibetan speech recognition. The
perimental results showed that the features extracted by

based on MFCC features. In the experiments, we compared tAgEP, 1€aming method can better simulate the process of
deep feature learned by the single layer sparse auto-encodi@nsforming frequency signals to sparse trigger signal of the

with the feature learned by Multi-layer perceptron (MLP) angfuditory nerve and have a better performance on speech

MFCC features to train HMM models for speech recognition recognition than MFCC features and the features extracted by
" MLP

We evaluate the sparse auto-encoder method on extracti
the deep features for Tibetan isolated word speech recogniti

In this paper, two data sets were used for evaluation. One In furth K il | f Tib
is 8 speakers (4 males and 4 females) saying the Tibetan digits " further work, we will use a large amount of Tibetan

0 to 9 for 4 times, and the other is 10 speakers (5 males and@Ntinuous speech data to evaluate the performance of the
females) saying 34 Tibetan letters for 4 times. The TibetaRroPosed deep feature learning method for speech recognition.
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