
Combining Path-and-Posture Planning in 3D
Environment

G. Zhang
Beijing University of Technology

China

H. Liu
Beijing University of Technology

China

Y. Huang
Institute of Computing Technology

 Chinese Academy of Sciences
 China

S.M. Zhang
Academy of Mathematics and Systems Science

Chinese Academy of Sciences
 China

R.Q. Lu
Academy of Mathematics and Systems Science

Chinese Academy of Sciences
China

Abstract--This work is part of a project “full life cycle automation
of computer animation generation”. Among various animation
planning tasks, it is crucial to plan the moving traces of avatars.
Our previous animation generation software <Swan> includes a
path planning module. However, that module generates only a 2D
plan path. In this paper, we introduce a recent work of 3D path
planning. Considering the possibility that inadequate 3D
environments may request the avatars to undertake special
posture while traversing the environment, we combine path
planning with posture planning in automatic 3D traverse. Other
contributions of this paper include: development a 2D
mathematical model for 3D real environment and an algorithm
transforming the latter to the former; a new principle of
constraint based avatar sensitive path determination; design a
calculus for calculating constraint oriented cost calculation based
on spatial movement complexity of motion graph clips.

Keywords-path-and-posture planning; obstacle map; automatic
animation generation

I. INTRODUCTION

Computer aided animation generation (CAAG) has been a
long standing research interest of AI and computer graphics
community [1]. Most of these works tried to automate some
aspects of animation generation. It was the last two authors of
this paper that have been leading a research team from 1990
for exploring an innovative technology--full life cycle
automation of computer animation generation [2]. Given a
story text written in some limited Chinese natural language
(currently Chinese), through the following series of computing
processes, the final animation will be generated ultimately:

Step 1: Understanding of the text written in limited
Chinese natural language, and converting into a form of
semantic representation. Step 2: Analyzing the content of the
story with necessary common sense knowledge checks. Step 3:
Qualitative scene planning. Step 4: Quantitative scene
calculations. Step 5: Cartoon generation supported by an
animation knowledge base.

This was the SWAN project supported by the Chinese
Academy of Sciences whose first stage was completed in 1995.
In its animation generating process, step 3 involves various
aspects of planning, such as plot planning, role planning, path
planning, etc, where the problem of path planning was not
satisfactorily solved. In fact, simply speaking ‘path planning’
is not enough for characterizing the goal we want to reach.
The technique for implementing ‘path planning’ in automatic
3D animation generation can be divided at least in three
levels:

1. 3D motion path (in 3D real environment) planning.

2. 3D path (in 3D Euclidean space) planning.

3. 2D path (in 2D Euclidean space) planning.

That implemented in the early phase of SWAN is only
level 3 and is thus only of theoretical meaning. At that time,
the basic motion clips were programmed with the motion
assembler language script. It was rather cumbersome. Our
current goal is to implement level one: 3D motion
path-and-posture planning. During the animation generation
process, the motion clips will be searched and collected from
database dynamically. For implementing this goal, we have the
following concerns:

1. To plan a 3D motion path one must find a path on a 3D
environment possibly with lots of obstacles such as hills,
slopes, caves, rivers, road gaps, etc. All of them have influence
on people’s walking through.

2. Then, a feasible path for avatar A is not necessary a
feasible one for avatar B. A tall guy may climb a hill but a
dwarf may not. On the other hand, the latter may climb
through a small window but the former may not. As a
consequence, the 3D motion path planning is avatar dependent.
For a given 3D environment, the computer should derive a
path for each particular avatar.

3. Furthermore, even if a path is feasible, the avatar may
need to take different postures when passing through different

International Conference of Electrical, Automation and Mechanical Engineering (EAME 2015)

© 2015. The authors - Published by Atlantis Press 425

obstacles. A tall guy may need to bend when walking under a
tree while a dwarf does not. Therefore, the 3D path planning
must be combined with posture planning.

We report in this paper the following advances made in the
new Swan project based on above concerns:

1. Given a 3D environment E and two locations A and B in
E, how to determine all possible paths for human beings’
walking from A to B?

2. Given the 3D environment E with those possible paths
determined above and a particular avatar P, how to determine
those places of E which may become obstacles for P’s going
through, together with a quantitative assessment of obstacles
caused by each type of obstacles?

3. Given the above assessment of obstacles, how to
determine the feasible paths for P and if possible, the best fit
one for P? How should P adjust his posture to overcome the
obstacles?

4. Given the best-fit path P and the posture requirements
imposed on P, how should the computer get necessary motion
clips for P from the motion graph database and combine them
to form a complete motion path in 3D animation?

5. If there are not appropriate motion clips for constructing
the whole motion path, how should the computer create new
compositional motion clips from the existing ones to fill the
gap(s)?

II. RELATED WORK

Much previous work with path planning has only revolved
around path. Hofner and Schmidt [3] use the template
matching method to compare the current state of the robot
with the past states, to find the closest state, and then modify
the path in this state to get a new path. In order to improve the
adaptability to environmental changing of template matching
path planning technology, Shang and Xu [4] design a path
planning method that combines environment templates and
neural network learning. Template matching path planning
method is simple in principle, but the defect of this method is
depended on the robot's experiences. Conn and Kam [5] use
artificial potential field path planning method to control the
robot to avoid obstacles and reach the target position.
Obstacles produce repulsive force to the robot. The target
point for the robot produces gravity. The resultant force of
gravity and repulsive force controls the robot. Artificial
potential field path planning technology is simple in principle,
but there are usually local minimum points in this method.
Tarjan [6] uses visibility graph method to convert a robot to a
point. After connecting the point of robot, the target point and
the vertices of the obstacles, if no straight lines intersect with
any obstacles, a so-called visibility graph is constructed. All
paths from the starting point to the target point along these
straight lines are collisionless, because any two vertices of a
straight line are visible. The aim of path planning is to search
the shortest distance from the starting point to the target point
through these visible lines. For full coverage path planning, Fu
and Lang [7] propose a fuzzy path planning method of moving
robot. Zun and Kato [8] propose path planning and collision
avoidance methods of moving robots and UAVs based on

information fusion technology. Many scholars have done a lot
of works on path planning, but they are all limited in the
research of posture planning. We searched many relevant
literature of posture planning, but only in medical literatures,
some described the impacts of different psychological states
on the choosing of role’s posture. Our job is to combine the
path and posture planning to find a path relevant both to the
story and the avatars rather than just the shortest path.

III. REPRESENTING THREE-DIMENSIONAL SCENE AS A

WEIGHTED TWO-DIMENSIONAL GRAPH

Path planning is an eternal topic of AI research. But
path-and-posture planning has been relatively less studied. The
posture of avatar’s walking in a 3D environment depends
heavily on the condition of the path. Are they walking on a
broad way or on a narrow passage? Are they stepping
downstairs or upstairs? The postures are all different. To the
best of our knowledge, we haven’t yet seen such research
work on combining path planning with posture planning. So in
view of the above mentioned five questions, our work is as
follows.

Given a story with a 3D background description D, one of
the main steps of automatic animation generation is to
transform D into a mathematical graph G before any path
planning algorithm can be applied to it. In order to do that,
some simplification of 3D background description is
necessary.

We consider any non-human object (building, tree, hill, etc)
in the environment as an obstacle which limits the motion and
posture of avatar. For the moment, we assume that each
obstacle takes the form of a polygonal platform. This is not an
oversimplification since any 2D region can be approximated
with polygons. Moreover, any 3D region can be divided in a
finite number of horizontal segments such that each segment
can be roughly approximated as a 2D polygonal platform.
Thus a 3D region is approximated by layered polygonal
platforms with different heights and different polygon forms.
A further simplification specifies that only smaller polygonal
platforms may be situated on larger ones. Good examples of
layered platforms are the terraced fields, figure 1.

FIGURE 1: TERRACED FIELDS.

The process of converting a three-dimensional scene to a
2D graph followed the steps below:

Step 0: Given a 3D environment, figure 3(a).

Step 1: Transform the 3D real environment to a 3D
environment model, where each obstacle is modeled with a
terraced polygonal form, which is a layered 3D object, where
each layer is a segment of some polyhedral cylinder [9].
Horizontal or vertical ladders may exist to connect two

426

neighboring layers of the terraced polygon or to connect two
neighboring terraced polygons. Besides, barriers may exist to
block the space between obstacles to prevent avatars from
walking through the gap, figure 3(b).

Step 2: Transform the 3D environment model to a 2D
obstacle map which consists of a set of nested 2D polygons,
where 2D nested polygons represent 3D overlapped polygonal
layers, while the ladders and barriers are represented by
connecting line segments.

Step 3: Transform the 2D obstacle map M to a 2D
undirected graph G in mathematical sense as follows, figure
3(c):

First, each polygon P(M) of M produces two nested
polygons P(G) of G, where each edge of P(M) produces two
parallel edges for P(G) to denote the two parallel paths on and
below that polygon edge, figure 2(a);

Next, build new edges for G to connect each vertices of
each polygon P(G) with all other vertices of P(G) and also
with other polygon’s vertices contained in P(G), provided that
none of them intrudes in any other polygons, figure 2(b);

Last, build new edges for G to represent any ladders and
bridges, where the two end points are situated on both sides of
the bridges, figure 2(c); Call the obtained graph C, where all
vertices of C are called contact points.

Figure 2(a) Figure 2(b) Figure2(c)

Step 4: Connect the nodes which are at the same height
and have a path between them by straight lines but the lines
cannot cross any obstacle, and then add the lines into the edge
set as edges of the graph. If the path is a broken line, the best
one is that each turning point must be at the vertices of an
obstacle, instead of turning before encountering the obstacles
[10]. In addition, the lines between contact points of different
heights are added into the edge set of the graph. As figure 3(d)
shows, the blue lines represent the edges of height 0, the red
ones are the edges of height 1, and brown dashed lines
represent the edges between the contact points on different
heights.

Step 5: Remove all unnecessary edges and vertices from C
to obtain graph S, figure 3(e). Edges and vertices of C are
called unnecessary if they will never be walked through by
avatars in any circumstance. For example, any closed polygon
CP in C, which does not contain any contact points other than
the vertices of its boundary, is unnecessary because no avatar
can walk through the boundary (cannot go up or down the
boundary), figure 3(f);

Step 6: Assigning constraints, postures and weights to each
of the edges. A current table of constraints on avatars is given
below in section 4. The postures are determined by a
knowledge base with both obstacle type and avatar type as
parameters. Part of this knowledge base is shown in table 3.
Once the postures are determined, the traverse costs can be

calculated. The details of calculating difficulty degree depend
on motion graphs and are shown in section 5.

Figure 3(a) Figure 3(b) Figure 3(c)

Figure 3(d) Figure 3(e) Figure 3(f)

IV. FIND OUT ALL MEANINGFUL PATHS

In a three-dimensional environment, the number of paths
from the starting point to the end point is countless. If we want
to find the best path, the number of candidate paths should be
finite. Besides, different from the traditional approaches of
path finding which are independent of the individual walking
avatars, our approach is individual constraint sensitive. The
constraints of the possible paths and the type of the avatar
together determine not only the feasibility of walking through
any path segment, but also the difficulty (cost) of walking
through it. This helps us find all possible paths consistent with
constraints from the infinite paths and select the best suitable
one from them. Attributes are defined for each obstacle and
avatar. Whenever an avatar encounters an obstacle, their
attribute values jointly determine the proper posture for the
avatar. Based on the key points above, we have designed the
attributes of obstacles and avatars as shown by table 1 and
table 2 respectively. Table 3 is a matrix that describes an
avatar’s choice for posture when faced with different
obstacles.

TABLE I . THE OBSTACLES AND ITS ATTRIBUTES.

Obstacles Attributes Appendages Style

Hillsides
Height,
width,
slope

The ladders,
caves

Caves
Size,

length,
height

Bridges

Length,
width,
height,
slope

Handrail

Suspension
bridge,

single-plank
bridge, chain
bridge, stairs

Trees
Area of the

shade,
height

TABLE II . THE AVATARS AND ITS ATTRIBUTES.

Type Height Width Thickness

Standard 160-170cm 30-40cm 8-15cm

Children Under 130 cm Under 20cm 5-10cm

Fatty 160-170cm Above 40cm Above 15cm

Tall 170-190cm 30-40cm 8-15cm

427

TABLE III . POSTURE CHOICE BASED ON AVATAR AND OBSTACLE.

 Hillsides Caves Bridges Trees
Standard Climb Crawl Walk Walk
Children Cannot

pass
Walk Crawl Walk

Fatty Round Round WF>WB,
cannot pass

Walk

Tall Climb Crawl Walk Bending
over

Algorithm1 (Find out all meaningful paths):

1. Given an avatar with concrete personal characters
(tallness, fatness, age, etc);

2. Extend the graph G with two vertices the starting and
ending points of the avatar. They are also contact points and
should be connected with other contact points;

3. Check table 3 and remove all edges with constraints
which make the avatar’s going through impossible;

4. Mark all points as unvisited. Initialize an empty stack.
Set the source s as the current point;

5. Mark the CP as visited and push it into the stack;

6. Iteratively check the adjacent points of the CP. For an
adjacent point a, if it is the destination, print the path from s to
it by printing all the elements of the stack from bottom up; if it
is not the destination, mark it as visited, set it as the CP and go
to step 2;

7. As for now all the adjacent points of the CP have been
visited. Mark the CP as unvisited and pop it out of the stack.

V. FIND THE BEST PATH BY CALCULATING THE POSTURE

COSTS

According to the requirements of the plot, we search for
the best path from them, which is the one that can produce the
most well-connected sequence of motion. A salient feature of
our algorithms is to use space movement complexity of
motion graphs to calculate the costs any avatar has to pay
when this avatar is forced to take that posture in some
situation.

The popular A* algorithm takes into account only the cost
of paths but never the posture of an avatar. There is no obvious
interdependence between these two aspects, thus the shortest
path does not necessarily be the one with the smoothest
posture at the same time. Because we favor visual effects over
time saved, our method selects the best path by calculating the
degree of well-connectedness for each path [11].

We first convert each path into a sequence of motion clips
by selecting the appropriate motion clip for each obstacle on
the path and assembling them sequentially. We then measure
the well-connectedness of each sequence by averaging the
well-connectedness of all consecutive motion clip pairs.

D�� ′, �� = min
θ,
,� �
�� −

zx
T

,,θ
�� ′
�

�

Where the linear transformation
zx

T
,,θ

rotates a point p

about they (vertical) axis by θ degrees and then translates it
by (x, z).

Given the definition of spatial distance, we can define the
changing rate RC of a motion clip C as

�� = 1
�� − 1 � ���� , �����

����

���

Where�� , �� , ..., ��� are motion clip C’s constituent
frames.

If a motion clip C1 changes smoothly into the next clip C2,
then the spatial distance between ����� , the last frame of C1,
and ���, the first frame of C2, will be close to the changing rate
of C1. However, in most cases, one can expect an abrupt
change across two consecutive clips. Thus the difference
between this boundary spatial distance and the changing rate
of the first clip provides a good measurement of the
well-connectedness of the two clips. Formally, for two
consecutive clips C1 and C2, their well-connectedness ���,�
is

���,� = min !0, � !����� , ���# − ���#

Negative values of � !����� , ���# − ��� indicates that these
two clips are well-connected. So when they occur, the
well-connectedness ���,� is set to zero.

We are now ready to define the well-connectedness of a
path. For a path P its well-connectedness Ω$ is

Ω$ = 1
% − 1���&,�&'�

(��

���

whereC1, C1, Ck, are its corresponding sequence of clips.

The path with the lowest well-connectedness is the best
path we are searching for. In order to make the best path have
more smooth connection, we use linear interpolation algorithm
[12].

VI. EXPERIMENTS

We made use of the CMU motion capture database, which
contains 2,605 trials with each trial being a compound of a
dozen unit motions. It is voluminous and should be tailored
smartly to meet our purpose.

This is a two-step process, i.e. extraction and
standardization. The extraction step extracts proper unit
motions from the CMU database. Guided by the description of
the trials, a set of candidate trials for a target unit motion is
first assembled and then manually scrutinized for its existence.
If one is found, it is extracted according to its starting and
ending frame numbers. In our application, depending on
whether it can be followed by itself, a unit motion is either
repetitive or connective. A special treatment is employed for
the extraction of the first type. The first frame and the last one
of a repetitive motion should be similar enough to ensure the

428

smoothness of the repetition. Manual extraction cannot
guarantee this level of similarity. Therefore only the intervals
of the first and the last frames in their containing trial are
specified manually and a program is responsible for the actual
pinpointing of their exact location.

The unit motion thus extracted cannot be used directly.
They must be further standardized in two aspects, i.e.
alignment and normalization, both of which are performed for
the orientation of a root joint. Because of the nature of a 3D
place, the direction of a unit motion is required to align to the
global coordinate system. The raw unit motions usually do not
conform to this requirement and form a slight angle with one
of the axes. Alignment is carried out by rotating the root joint,
thus the whole body, with respect to the global axis y by this
angle. This is equal to multiply a rotation matrix to the left of
the orientation which is converted to a quaternion beforehand.
After the multiplication the orientation is converted back to
Euler angles. Normalization is the process of adding or
subtracting proper number of cycles to make sure that each
angle of the orientation of a root joint falls into the interval of
[0, 360]. This is an essential preparation for the interpolation
between two unit motions. With the absence of normalization,
the interpolation may whirl the whole body by a full circle
during the transition between motions.

The figure 3(a) shows the path of avatar from the start to
the end. Figure 3(b), figure 3(c) and figure 3(d) show the
motion process of avatar, respectively, showing carefully
walking through the overfly, crawling ahead and going down
the stairs.

Figure 3(a) Figure 3(b) Figure 3(c) Figure 3(d)

VII. CONCLUSIONS AND FUTURE WORK

This paper is a part of our “automatic animation generation”
project. It proposes a method of combining path-and-posture
planning in 3D environment. We represent three-dimensional
scene with obstacles map, then we select a set of possible
paths from the infinite paths. Next, the paths are converted to
motion clips. Finally, according to the similarity metric, we
search for the lowest well-connectedness as the best path. Our
work, creatively took role’s path and posture planning into
consideration according to the requirements of automatic
animation generation system, improved the automation degree
of generating motion sequences, and enriched the forms of
roles’ motions in our system.

However, when planning postures, we could use a more
enriched motion database, while study organization motion
clips better. More comprehensive consideration of scene and
posture information will make the motion selection of a role
more consistent with the needs of the system. These will be
our future work.

ACKNOWLEDGEMENTS

This work was supported by MADIS Key Lab and

Sino-Australian Joint-Lab for QCQIP, NSF projects 61232015
and 61073023. The data used in this project was obtained from
mocap.cs.cmu.edu. The database was created with funding
from NSF EIA-0196217.

REFERENCES
[1] Lu, R. & Zhang, S., Automatic Generation of Computer Animation.

New York/London: Springer, pp.68-69, 2002.

[2] Lu, R., Zhang, S., & Wei, Z., Generate computer animation from natural
language stories. Pacific Asian Conf. On Expert Systems, Los Angeles,
1999.

[3] Hofner, C. & Schmidt, G., Path planning and guidance techniques for an
autonomous mobile robot. Robotic and Autonomous Systems,14(2),pp.
199-212, 1995.

[4] Shang, Y., Xu, Y. & Pang, Y., AUV global path planning using case
based learning algorithm. Robot, 20(6), pp. 427-432, 1998.

[5] Conn, R. & Kam, M., Robot motion planning on N-dimensional star
worlds among moving obstacles. IEEE Trans on Robotic Automation,
14(2), pp. 320-325, 1998.

[6] Tarjan, R., A unified approach to path problems. J of the Association for
Computing Machinery, 28(3), pp. 577-593, 1981.

[7] Fu, Y. & Lang, S., Fuzzy logic based mobile robot are a filling with
vision system for indoor environment. IEEE Int Conf on Computational
Intelligence in Robotics and Automation, Monterey.326-331, 1991.

[8] Zun, A., Kato, N. & Nomura, Y., Path planning based on geographical
features information for an autonomous mobile robot. Artificial Life and
Robotics, 10(2), pp. 149-156, 2006.

[9] Guo, J., Chu, H. & Lu, B., Research on the algorithm for generating
minimum-volume encasing box for polyhedron. Computer Applications,
21(1), pp. 38-41, 2001.

[10] Zhang, H., The research and implementation of simulating virtual human
walking and path planning in three- dimensional virtual environment.
Master's degree thesis, Xiamen University, pp. 51-54, 2009.

[11] Kovar, L., Gleicher, M. & Pighin, F., Motion graphs. In Proceedings of
SIGGRAPH, pp. 473–482, 2002.

[12] Watt, A. & Watt M., Advanced Animation and Rendering Techniques
theory and practice, Publications: Addison-Wesley Professional, 1992.

429

