

Realizing Robustness Testing Based on TTCN-3
X.M. Liu

College of Information
Beijing City University

Beijing China

S.M. Liu

College of Science and Information
Qingdao Agriculture University

Qingdao China

 Y.P. Liu

 College of Computer
 Beihang University

Beihang China

J. Wu
 College of Computer
Beihang University

China

Abstract—Robustness refers to the ability to ensure the software
system execute correctly under normal or abnormal conditions in
software testing. Robustness testing needs a large number of
illegal and effective inputs, which are one of the key researches.
The data variance is based on mutation testing, which is a kind of
white box testing through destructing the system under test for
robustness testing. The variance data is a kind of determining the
robustness by applying some interference to the test input to
create abnormal data which is then used to the system under test.
Because TTCN-3 is used for black box testing, it can get the data
rule description from the system under test. The data variance is
also used by TTCN-3 testing. Therefore, the automatic generation
of robust illegal inputs is realized on the basis of the data
variance in this paper.

Keywords-robustness testing; data variance; TTCN-3; mutation
testing

I. INTRODUCTION
The methods used in traditional software testing are mainly

used to validate whether the software behaviours accord with
demands, namely the function testing [1]. But the abnormal
test is often not paid enough attention. With the software used
in the important fields of politics, military and finance, the
robustness of software has been paid more and more attention.
Robustness de-scribes the degree of correctly running its
functions of a system or a component in high intensity input
environment or in an invalid data input [2]. As the input data
from different system is different, the abnormal input of
robustness is different too, which leads to the low reliability of
robustness test case. At the same time, robustness testing
needs the test case must cover all possible abnormalities or
attack modes, the number of test cases is usually in large scale,
which makes the robustness test case development more
difficult [3].

To test the distributed systems and protocols is always an
active research field by use of illegal input technology of
robustness. Early studies focused on the illegal input
technology of robustness based on hardware. Then the illegal
input technology of robustness based on software (SWIFI) was
introduced in order to reduce costs and the difficulty of
development [4]. For SWIFI, the implementation technology

and the method, describing faults of the illegal input of
robustness, are the two main problems paid more attention
during studying. A common method to implement the illegal
input of robustness is to insert an additional illegal input layer
of robustness which is responsible for injecting various
communication faults between IUT and its underlying protocol.
There are two options to insert the software [5]. EFA and
Virtual wire select the specific location in the OS kernel to
insert it, while Orchestra directly inserts it under IUT.
Regardless of the way, the illegal input layer of robustness is
usually developed as the kernel component OS. To describe
the faults is by defining specific test scripts which can control
test and the illegal input of robustness. The languages used by
test scripts include TCL (such as Orchestra), C (such as EFA)
and self-defined languages (such as FIAT and virtual wire).
The disadvantage of test script is that its usability is not good
which needs tester learn the syntax rules firstly [6]. At the
same time, scripting manually also causes all kinds of errors
easily. Based on the above analysis, the fault injection is
commonly implemented by inserting the illegal input layer of
robustness in the current research But it is closely related with
the operation platform and OS, which leads to poor portability
[7].

Therefore, a new technique to implement the illegal input
of robust-ness is presented in this paper, which can effectively
separate the independent parts from the system and improve its
portability. Simultaneously, in order to solve the usability of
test scripts, this paper presents the method to describe faults
based on model. The fault activity is defined by the way of
visualization in the test, which can automatically generate test
scripts from the model and avoid writing the test scripts
manually [8].

II. BUILDING THE ILLEGAL INPUT
Traditional software testing methods focus on verifying

whether the software behaviours under test accords with
demands, namely the function test. The abnormal condition
test is not paid more attention. Different software has different
input data, which makes the different illegal input of
robustness and leads to the low reusability of test cases [9]. At
the same time, the robustness testing needs that the test cases

International Conference of Electrical, Automation and Mechanical Engineering (EAME 2015)

© 2015. The authors - Published by Atlantis Press 437

must cover all possible abnormalities or attack modes, the
number of test cases is usually in a larger scale, which makes
the test cases development more difficult. The most typical
method of robustness testing is to generate a large number of
illegal inputs to test the SUT tolerance to abnormal data [10].

A. The Module Framework
In TTCN-3, the abstract layer is very high, whose test set is

a kind of specification itself. So in this paper, mutation
operators are defined based on TTCN-3 data types. The legal
data unit defined in the set of TTC-3 test cases is made as
input, which is mutated by selecting the mutation operator by
way of some mutation strategy, the a large number of illegal
input are produced. Therefore, the method to generate the
illegal input of robustness testing is also based on specification.
The module framework to generate the illegal input is shown
as fig.1.

FIGURE I. THE MODULE FRAMEWORK TO GENERATE THE

ILLEGAL INPUT

The capture component is used to obtain the grammatical
structure of legal input. The Mutation component is used to
generate illegal input by the mutation operator, according to
the grammatical structure of legal data. The injector sends the
illegal input to the SUT. In addition, the mutation operator
library contains all the mutation operators that have already
realized. The mutation strategy describes the rules to select the
mutation operators. Both of them will serve as the input of
Mutation component.

When generating the illegal input, it is very important to
capture the legal input and analysis its se-mantic structure,
which is related with selecting the mutation operator and
implementing the mutation. There are two methods to capture
the legal input. That is static analysis and dynamic capture.
The static analysis is to analyse the abstract test set of TTCN-3
by using the parser and then extract semantics tree. The
dynamic capture is to capture the calling of encode function by
inserting codes between TE and CD. The parameter value of
the function is the message instance with semantic structure,
shown in fig.2.

FIGURE II. CAPTURE THE LEGAL INPUT DYNAMICALLY

B. Select the Mutation Operator
The concept of mutation operator derives from mutation

testing which is a kind of testing method oriented defects. The

data variation method proposed in this paper is different from
the mutation testing. Be-cause the data variation focuses on
the data sent to the SUT, the mutation testing is a kind of
program variation and focuses on the source code of the sys-
tem under test. Their differences are shown in Table 1.
Because the objects of the mutation operator are different, the
factors concerned are different when designing the mutation
operators.

TABLE I. THE DIFFERENCES BETWEEN THE MUTATION TESTING AND
THE DATA VARIATION

Types of
Mutation

the Objects of
Mutation Operator

the Output
of Mutation Function

Mutation
Testing
(Program
Variation)

the source code of the
SUT

the variants
of program

detect the
adequacy
of test

Data Variation the input data of SUT the abnormal
input data

detect the
robustness
of SUT

The data variation focuses on motivating the SUT, so it is
regarded as an operation with the sensitive data type. A
message instance is made up of the structure and value which
can be mutated, that is, breaking the data structure and
updating the data value, or combining both of them. On the
other hand, what types of mutation is applied to the data
structure and the data value, it is also the concerned factors to
design the mutation operation. The mutation operators
designed in this paper and the TTCN-3 data type are shown in
Table 2. To be explained, because the focus of this paper is the
method to generate the illegal input based on the data variation,
the design of mutation operator is not very comprehensive.

TABLE II. THE MUTATION OPERATOR CORRESPONDING TO THE DATA
TYPE

Mutation Operator Data Type Remarks

Boundary Value integer be possible to lead to
data overflow

++/-- integer be possible to lead to
data overflow

Insert the special
characters repeatedly char string lead to the string buffer

overflow
Insert the format
characters repeatedly char string break the data string

structure
Insert the special
characters char string break the data string

structure

Null string char string
be possible to lead to
the abnormal null
pointe

Lack elements record, set, record of,
set of

be possible to lead to
the abnormal null
pointe

duplicate elements record of, set of lead o the abnormal
data type

Elements disorder record if break the original order
of data domain

Due to the different data types are corresponding the
different mutation operators, and a mutation operation may
adapt to a variety of data types, the mutation operation is
determined according to the data type and then to be chosen
before executing the data variation. So in this paper the

438

operation selection rule is described by use of variation
strategy. The focus of this paper is not how to select the
mutation operator, for ease of implementation, the mutation
strategy used in this paper is the random selection. Firstly
determine the set of mutation operator according to the data
type and then select an operation from the set randomly.

Algorithm: Select the Mutation Operator.

 INPUT: Operators: = {operatori| operatori is one of
mutation operators in the mutation
 operator library, operatori
∈Operators}

 InputType: = {fieldi| fieldi is the element of
valid input}

 Map: = {<Operator, Type>}

OUTPUT: Operator: = {operator | operator ∈Operators}

ALGORITHM BEGIN

 Set<Operator> operators;

 Count: = 0;

 FOR EACH entry<Operator, Type> IN Map

 Set<Type> types = entry.getTypes
(InputType);

 IF InputType in types

 operators.add (entry.getOperator
());

 Count++;

 END IF

 END FOR

 Index: = random(Count);

 Operator: = operators.getOperator(Index);

 RETURN Operator;

ALGORITHM END

In order to play the role of mutation strategy, the
corresponding relationship model is built between the
mutation operator and data type in this paper. The
corresponding relation between them is based on the
consistency of data type properties, which is described in
XML, shown in fig.3.

FIGURE III. THE SCHEMA OF THE RELATION BETWEEN THE

MUTATION OPERATOR AND DATA TYPES

III. CASE STUDIES
The object under test is the TCP subsystem in this case.

The subsystem receives messages sent by the client. Then the
messages processed are then sent to the client. The data type
of test data defined in the function test set of TCP subsystem is
shown as follows:

type record tcpPacket {

 charstring packetType length(2),

 charstring packetLength length(2),

 charstring packetData

}

During the test, the test data are mutated by use of the
abnormal input generation module with robustness, the
execution process is shown as fig.4.

FIGURE IV. THE EXECUTION PROCESS OF ROBUSTNESS TESTING

In order to clearly observe the implementation process of
data variation, the testing information col-lection module
records the interaction information between the testing system
and the SUT, shown in fig.5.

FIGURE V. THE INTERACTION INFORMATION LOG OF

ROBUSTNESS TESTING

According to the test execution process and the message
interaction records, the first test data is applied to the
structured data types mutation operators, its packType and
packLength lack values, which leads t the first data case
execution results for fail. But then the test data is not mutated
and the test is executed successfully, and obtains the correct
response. It can be seen that the TCP subsystem under test has

439

a certain tolerance for the abnormal input with lacking data
domain value.

IV. SUMMARY
The abnormal input generation module and the test

information collection module with robustness greatly enhance
the applicability of TTCN-3 testing technology. In this paper
there are better innovations in implementation technology of
the test adapter framework, the mapping relations between the
test adapter entity and the SUT, and the method generating the
abnormal input based on data variation.

The method generating the abnormal input based on
TTCN-3 is one of the main researches in this pa-per, which
can effectively improve the efficiency of developing TTCN-3
test system and reduce the test cost. During the
implementation, it effectively uses many related technologies,
such as reverse engineering, data modelling code generating,
and it also achieved good results.

REFERENCES
[1] Dawson S, Jahanian F, Mitton T.ORCHESTRA: a fault injec-tion

environment for distributed systems[C]//26th Int’l Symposium on Fault-
Tolerant Computing (FTCS) , Jun 1996.

[2] Gábor Ziegler, György Réthy. Performance testing with TTCN-3 [R],
TTCN-3 User Conference, 2006

[3] Du Wenliang, Mathur A P.Vulnerability Testing of Software System
Using Fault Injection.Coast TR 98- 02, 1998.

[4] Gamma E, Kent Beck.Contributing to eclipse [M].[S.l.]: Adision Wesley,
2013.

[5] Arlat J, Aguera M, Crouzet Y, et al.Experimental evaluation of the fault
tolerance of an atomic multicast system[J].IEEE Trans Reliability,1990,
39(4) : 455- 467.

[6] De P, Neogi A, Chiueh T- C.VirtualWire: a fault injection and analysis
tool for network protocols[C]//Proc IEEE 23rd In-ternational Conference
on Distributed Computing Sys-tems , Providence , Rhode Island, USA,
2013.

[7] Segall Z, Vrsalovic D, Siewiorek D P, et al.FIAT- Fault injection based
automated testing environment [C]/ /Proc FTCS- 18 , Tokyo,Japan, 1988:
102- 107.

[8] FOKUS.Unified modeling language: testing profile, version 2.0.OMG
Adopted Specification.Deutschland, 2004- 04.

[9] Rosenberg J, Schulzrine H, Camarillo G, et al.SIP: Session in-tiation
protocol, RFC3261[S], 2012.

[10] Echtle K, Leu M.The EFA fault injector for fault- tolerant dis-tributed
system testing[C]//Proc Workshop on Fault- Toler-ant Parallel and
Distributed Systems, Amherst, USA, 2012.

440

	Introduction
	Building the Illegal Input
	The Module Framework
	Select the Mutation Operator

	Case Studies
	Summary
	References

