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Abstract—In this paper, we present the implementation of 

infeasible kernel-based primal-dual interior-point methods for 

linearly constrained convex optimization. Numerical results are 

provided to demonstrate the efficiency of the algorithms. 
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I INTRODUCTION 

In this paper, we consider the linearly constrained convex 
optimization (LCCO) problem 

(P)       minimize ( )f x  
subject to , 0Ax b x   

And its dual problem 

(D) maximize ( ) ( )T Tb y f x f x x   

subject to ( ) 0, s 0TA y s f x     

Where 
m nA R  with rank ( A )= m , 

mb R , 

( ) : nf x R R  is a convex and twice continuously 

differentiable, ( )f x is the gradient vector of ( )f x . It is 
obvious that LCCO reduces to convex quadratic optimization 

(CQO) if

1
( )

2

T Tf x c x x Qx 
, that is to say, LCCO is 

the generalization of CQO, which contains linear 

optimization (LO) (i.e., 0Q  ) as a special case. Since the 
groundbreaking paper of Karmarkar, many researchers have 
proposed and analyzed various interior-point methods (IPMs) 
for LO and a large amount of results have been reported. For 
a further survey we refer to recent monograph on the subject 
[4, 8]. 

In the past few years, CQO has received considerable 
attention from researchers because of the close connection 
between LO and CQO. Monteiro and Alder [6] presented a 
primal-dual path-following interior-point algorithm for CQO. 
Yu et al. [9] considered a polynomial predictor-corrector 
interior-point algorithm for CQO. Cai et al. [3] proposed a 
class of primal-dual interior-point algorithms for CQO based 
on a finite barrier and obtained the currently best known 
iteration bound for large-and small-update methods. 

There are a variety of solution approaches for the LCCO 
problem which have been studied intensively. Among them, 
the IPMs gained many attentions than others methods. Zhu 
[11] proposed a path-following interior-point algorithm for a 
class of convex programming problems, including LCCO as 

a special case. Monteiro [5] studied the global convergence 
of a large class of primal-dual interior-point algorithms for 
LCCO. It is generally agreed that primal-dual path-following 
methods are most efficient from a computational point of 
view. However, there is a gap between the practical 
behaviour of the IPMs and the theoretical performance 
results. The so-called small-update IPMs enjoy the best 

known worst-case iteration bound ( log( / ))O n n   but 
their performance in computational practice is poor. In 
practice, however, the so-called large-update IPMs are much 
more efficient than small-update IPMs but with relatively 

weak theoretical result ( log( / ))O n n  . 

Recently, Peng et al. [7] introduced the so-called self-
regular barrier functions and presented a class of primal-dual 
IPMs for LO based on self-regular proximities. The currently 
best known iteration bounds for large- and small-update 
methods are established, which almost close the gap between 
the theoretical iteration bounds for large- and small-update 
methods. Bai et al. [2] introduced a large class of eligible 
kernel functions, which is fairly general and includes the 
classical logarithmic function and the self-regular functions, 
as well as many non-self-regular functions as special cases. 
The best known iteration bounds for LO obtained are as good 
as the ones in [7] for appropriate choices of the eligible 
kernel functions. 

The purpose of the paper is to present the implementation 
of infeasible primal-dual IPMs for LCCO based on the 
eligible kernel functions. Some preliminary numerical results 
are reported to show the efficiency of the proposed 
algorithms. 

The outline of the paper is as follows. In Section 2, we 
briefly recall the eligible kernel functions and the 
corresponding barrier functions. The framework of the 
infeasible kernel-based primal-dual IPMs for LCCO is 
presented in Section 3. Numerical results are provided in 
Section 4. Finally, some concluding remarks are made in 
Section 5. 

II THE ELIGIBLE KERNEL (BARRIER) 

FUNCTIONS 

In this section, we briefly recall the eligible kernel 
functions and the corresponding barrier functions that are 
used in the algorithms. For more details on the kernel 
functions we refer to [2, 7]. 
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A univariate (0, ) [0,: )     is called a kernel 
function [7] if it satisfies 

0
(1) (1) 0, ( ) 0, lim ( ) lim ( ) .

tt
t t t    

 

      
(1) 

One can easily verify that 
( )t

 is strictly convex and 

minimal at 1t  , with
(1) 0 

. 

We recall the so-called eligible kernel function [2], i.e., 
the kernel function satisfies four of the following five 
conditions, namely the first and the last three conditions.  

2

( ) ( ) 0, 1,

( ) ( ) 0, 1,

( ) 0, 0,

2 ( ) ( ) ( ) 0, 1,

( ) ( ) ( ) ( ) 0, 1, 1.

t t t t

t t t t

t t

t t t t

t t t t t

 

 



  

      

   

   

  

    

      

       (2) 

It should be pointed out that the first four conditions are 
logically independent, and that the fifth condition is a 
consequence of the second condition and the third condition. 
Since the second condition is much simpler to check than the 

fifth condition, in many cases it is easy to know that 
( )t

 is 
eligible if it satisfies the first four conditions. Some well-
known eligible kernel functions are presented below (see, 
e.g., [2, 3]). 

TABLE I: EIGHT ELIGIBLE KERNEL FUNCTIONS. 
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Corresponding to the kernel function ( )t , we define the 

barrier function 
( ) : nv R R  

 as follows 

1

( , , ) : ( ) : ( )
n

i

i

x s v v 


   . 

One can easily verify that ( )v  is a strictly convex 

function and attains minimal values at v e  and ( ) 0e  . 
Then we have  

( ) 0 ( ) 0 .v v v e     ▽
 

III INFEASIBLE KERNEL-BASED PRIMAL-DUAL 

IPMS FOR LCCO 

A. The Central Path 

Throughout the paper, we assume that the LCCO 
problem satisfies the interior-point condition (IPC), i.e., there 

exists 
0 0 0( , ),x y s

 such that 

0 0 0 0 00, 0, ,( ) 0 0.TAx b A y s f x sx     
 

It is well-known that the IPC can be assumed without loss 
of generality. In fact we may, and will assume 

that
0 0x s e  . For this and some other properties 

mentioned below (see, e.g., [5, 10]). 

The Karush-Kuhn-Tucker optimality conditions for the 
problems are given as follows  

, 0,

( ) 0, 0,

0.

T

Ax b x

A y s f x s

xs

  


    
                                 (3) 

The basic idea of the primal-dual interior-point algorithm 
is to replace the third equation in (3), the so-called 
complementarity condition for LCCO, by the parameterized 

equation
xs e

, with
0 

. Thus we consider the 
following system 

, 0,

( ) 0, 0,

.

T

Ax b x

A y s f x s

xs e

  


    
                                 (4) 

The parameterized system (4) has a unique solution for 

each
0 

. This solution is denoted as 

( ( ), ( ), ( ))x y s  
 and we call 

( )x 
 the 


-center of (P) 

and 
( ( ), ( ))y s 

 the 


-center of (D). The set of 


-

centers (with 


 running through all the positive real 
numbers) gives a homotopy path, which is called the central 

path of LCCO. If
0 

, then the limit of the central path 
exists and since the limit points satisfy the complementarity 

condition, the limit yields an  -approximate solution of 
LCCO (see, e.g., [5, 10]). 

B. The New Search Directions 

IPMs follow the central path approximately and find an 
approximate solution of the underlying problems (P) and (D) 

as 


 go to zero. Applying Newton’s method, we have 

2

,

( ) ( ) ,

.

T T

A x b Ax

A y s f x x f x A y s

s x x s e xs

   


       
     

 (5) 

For further uses we introduce the scaled vector as follows  

: .
xs

v




 

One can conclude that the pair 
( , )x s

 coincides with the 


-center 

( ( ), ( ))x s 
 if and only if v e . The classical 

logarithmic barrier function is defined by  

2

1

1
( ) : log , .

2

n
ni

c i

i

v
v v v R



 
    

 

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Let ( )c v  denotes the gradient of the classical 

logarithmic barrier function ( )c v . We 

have
( )ce xs v v    

. This implies that the system 
(5) is equivalent to the following system 

2

,

( ) ( ) ,

( ).

T T

c

A x b Ax

A y s f x x f x A y s

s x x s v v

   


       
                  (6) 

In this paper, we replace the right-hand side of the third 

equation in (6) by the gradient ( )v  of the barrier 

function ( )v , where ( )t  is any eligible kernel function. 
Then we consider the following system 

2

,

( ) ( ) ,

( ).

T T

A x b Ax

A y s f x x f x A y s

s x x s v v

   


       
                (7) 

The new search direction ( , , )x y s    is computed by 

solving the system (7).  If ( , , ) ( ( ), ( ), ( ))x y s x y s   , 

then ( , , )x y s    is nonzero. By taking a step along the 

search direction, with the step size  defined by some line 

search rules, one constructs a new triple ( , , )x y s  

 
according to 

, , .x x x y y y s s s              

The generic form of infeasible kernel-based interior-point 
algorithm for LCCO is shown below. 

Algorithm 1 Primal-Dual Interior-Point Algorithm for 
LCCO 

Step 0 Input a threshold parameter 1  , an accuracy 

parameter 0  , a fixed barrier update parameter 0 1  , 

a strictly feasible 
0 0 0( , , )x y s

 and 
0 1 

 such 

that
0 0 0( , ; )x s    . 

Set
0 0 0 0: , : , : , .x x y y s s     

 

Step 1 If
n 

, stop, 
( , , )x y s

is an optimal solution; 

otherwise, update : (1 )    , go to Step 2. 

Step 2 If ( , ; )x s    , go back to Step 1; otherwise, 
go to Step 3. 

Step 3 Solve system (7) to obtain ( , , )x y s   , go to 
Step 4. 

Step 4 Choose a default step size , go to Step 5.  

Step 5 

Update
: , : , :x x x y y y s s s            

, 
go back to Step 2. 

IV NUMERICAL RESULTS 

In this section, we report some numerical results. The 
maximum allowable step sizes uses in our experiments. Let 

1,2,... 1,2,...

1 1
and .

1, 1,

max max

P D

i i
i n i n

i i

x s
max max

x s

 

 

 
   

    
   

  

The maximum allowable step sizes are slightly reduced 

by a fixed factor 00 1 
 (we choose 0 0.75 

) to 
prevent hitting the boundary, i.e. 

0

max

P P   and 0

max

D D   . 

The new iteration point is obtained by 

, , .DP Dx x x y y y s s s              

We consider the following two LCCO problems in [1]. 

Example 1 

55 5

31 2
1 2 1

1 2 3

1 2 3

minimize ( ) 20 22.5 25
10 20 30

100,
subject to

, , 0.

xx x
f x x x x

x x x

x x x

    
          

     

  


  

Without loss of generality, we chose 
 1;1;1x s 

 and 

0y 
 as the start point. The eligible kernel function used in 

this paper is 6 ( )t
with the parameters

1p 
 and

2q 
. 

We choose the fixed barrier update parameter 0.5  , the 

threshold parameter 3  , the barrier parameter 
1 

 and 

the accuracy parameter
610  . 

For our infeasible kernel-based IPMs, we need 14 main 
iterations to reach our accuracy. An optimal solution of the 
problem is obtained by 

* (14.1977;32.7882;53.0141)x  , 
And the optimal value of the problem (P) is equal to 

912.6450. 

Example 2 

TABLE II: THE COEFFICIENTS OF THE OBJECTIVE FUNCTION. 

i  1 2 3 4 5 6 7 8 

0

it  5 8 8 3 3 3 3 8 

iC  15 15 15 10 10 10 10 15 
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2 4 5

2 6 7

3 4 5

1
8

0

1

1 3

1

1 2 8

8

minimize ( )
1

30

subject to

,

0,

20,

8,

  , ,

 

..., 0.

i i
i i

i i

C x
f x t x

C

x x

x x

x x

x x

x x

x

x

x x

x

x











  
    
    




  




 

 



 

  








 

Without loss of generality, we chose 

 1;1;1;1;1;1;1;1x s 
and 

0;0( ;0;0)y 
 as the start 

point. The eligible kernel function used in this paper is 

6 ( )t
with the parameters

1p 
 and

2q 
. We choose the 

fixed barrier update parameter 0.5  , the threshold 

parameter 8  , the barrier parameter 
1 

 and the 

accuracy parameter
610  . 

For our infeasible kernel-based IPMs, we need 18 main 
iterations to reach our accuracy. An optimal solution of the 
problem is obtained by 

* (16.2528;18.9997;13.7472;0.0000;2.7468;0.0000;1.0003;19.0003)x   

and the optimal value of the problem (P) is equal to 
1023.3822. 

It should be pointed out that the iteration number of the 
algorithms depends on the eligible kernel functions and the 

values of the parameters , and . 

V CONCLUDING REMARKS 

In this paper, we have implemented infeasible kernel-
based primal-dual IPMs for LCCO. Some preliminary 
numerical results are provided to show the efficiency of the 
proposed algorithms. 

Some interesting topics remain for further research.  
Firstly, the more details numerical test is an interesting topic 
to investigate the behaviour of the algorithm so as to 
compare with other approach. Secondly, the analysis of the 
convergence of the algorithm is also deserved to be 
researched. These will be other issue for future research. 
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