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Abstract—Integrate-and-Fire Mode (IFM) is  a quite simple 
neuron model, however, it is possible to simulate circle map. 
With the aid of IFM, the circle map iteration of phase can be 
implemented, meanwhile the symbolic sequences are acquired 
conveniently from Integrate-and-Fire process. In this paper, 
the study of phase circle map model and its symbolic dynamics 
is made. Firstly, the partition of symbols and their acquiring 
way are introduced one after the other. And then, the rotation 
and the devil staircase are computed immediately to 
distinguish the working states from the symbolic sequences. 
Finally, a distance formula of symbolic sequence, by which the 
relationship between the initial phase and distance can be 
shown, is given. It is shown that above analysis provides a 
simple and convenient way for the application of circle map. 
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I. INTRODUCTION 
Circle map is the mapping of a circle to itself. Comparing 

with single parameter maps such as Bernoulli map and saw-
tooth map, circle map has two parameters which exhibits 
richer dynamic characteristics, e.g., the periodic state, 
frequency locking and so on [1]. Single parameter maps have 
been widely used in signals measurement and processing. 
Since they are all amplitude mapping, and processing are for 
amplitude [2,3]. However, for many time-domain signals, 
frequency and phase also contain useful information. The 
most typical example is the biological information system 
where the pulse signal is embedded with information in 
interval. 

When measuring and processing signals with nonlinear 
maps, the more important thing is that the system should be 
very simple and felicity, such as down saw-tooth map [4], 
which is implemented by only charging and discharging to a 
capacitor. If the iteration of a map is imitated by complex 
calculation units, such a model is applicable only for 
simulation studies and not practical at all. Integrate-and-Fire 
Mode (IFM), which was proposed as a simple model of pulse 
neuron by Keeper and others [5, 6], exports a spike train. In 
order to describe this sort of signals effectively, the symbolic 
dynamics theory is used. The spike trains are expressed with 
symbolic sequences, which are digital data and thus may be 
used to calculate parameters of spike trains [7, 8]. 

In this paper, the IFM-based phase circle map and its 
symbolic dynamics are first described, and then the obtained 

symbol sequences are used to study the system. With the aid 
of symbolic sequences, the working states of the system, 
such as period, quasi-period and chaotic state, may be 
determined, and the rotation and the devil stairs can also be 
computed. Based on symbolic sequence order rules of circle 
map, a distance formula of symbolic sequence is defined. 

II. OUTLINE OF CIRCLE MAP [9] 

Circle map is a simple mathematical model which 
describes relaxation oscillation driven by periodic external 
force whose iterative equation is 
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in which Ω is the period ratio of the extern excitation to 
intrinsic oscillation, K represents coupling strength of 
external excitation and the system, and g() is a periodic 
function associated with the excitation signals. When g() is a 
sinusoid function, eqn(1) is transformed into a standard 
circle map, or sine-circle map, as follows:  
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FIGURE I. STANDARD CIRCLE MAP. 

Fig.1 demonstrates a standard circle map. Comparing 
with single parameter maps, the circle map has more 
complex dynamical behavior, such as periodic, quasi-
periodic and chaotic motions, etc. Usually, an Arnold tongue 
in Ω-K plane is used to vividly express frequency-locking 
area and rotations. When K<1, the map is monotonic, 
otherwise the map becomes non-monotonic, and there may 
be chaos existed. 
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III.  ITERATIVE RELATIONSHIP OF IFM 

To better understand the problem, a normalized IFM for 
which the main working principle is shown in fig.2, is 
considered. The state of IFM represented by x(τ) corresponds 
to the membrane potential of a neuron [5]. x(τ), which is 
usually a capacitor voltage, is charged up by a constant 
current source s0. The base threshold b(τ) is always less than 
the unvarying firing threshold. It is implied that the state 
instant reduces to the base threshold when it reaches the 
firing threshold, and simultaneously output a pulse. Repeated 
in this manner, the IFM outputs a spike train y(τ). When the 
base threshold is hold constant, the IFM simply repeats a 
limit cycle of slow charging and instantaneous discharging 
indefinitely. A simple but significant situation is to introduce 
a sinusoidal oscillation into the base threshold, i.e., b(τ) = 
kbsin(2πτ) where kb is the amplitude of the sinusoidal 
oscillation,  as shown in fig.2.  

x(τ)

0
1 2

τn τn+1

b(τ)

1

3

τ1 τ2 τ3 τ4 τ5 τ6

y(τ)

 
FIGURE II. THE WORKING PRINCIPLE OF IFM. 

The process can be described by the following 
eqns(3)&(4) 
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Where x is the state of the IFM, b(τ) is the base threshold 
whose amplitude satisfies 0＜kb＜1, and s0 is a positive 
constant that represents the constant buildup rate of the state 
x.  

Consider the dynamics of the spike train and integrate 
eqn (3) on [τn, τn+1], one obtains the following recursion: 
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Replace the base threshold with a sinusoid signal, and let 
Ω=1/s0, K=2πkb/s0, one obtains 

1 sin(2 )
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Let θn ≡ τn (mod 1), one obtains the standard sine-circle 
map which has the same expression as eqn(2). In above 
equation, θn is referred to as the normalized phase, and the 
parameter Ω is the rotating frequency of θn in the absence of 
the nonlinear term, which can be controlled by the buildup 
rate s0. The parameter K determines the strength of the 
nonlinear term and can be controlled by the amplitude of the 
base threshold when Ω is fixed. In conclusion, the IFM can 
be used to compute the standard circle map for any 
combination of Ω and K. 

IV. SYMBOLIC DYNAMICS OF THE IFM 

A. Partition the Symbols 

Although symbolic sequence is a coarse-grained 
description of dynamics, it provides the more practical and 
efficient way to study nonlinear dynamical systems [10, 11]. 

The key of the works in this way is the acquisition of 
symbolic sequences. Fig.3 demonstrates a schematic diagram 
how to partition the symbols of circle map and IFM. 
According to the symbolic dynamic theory [9], the function 
of circle map has three special points, minimal point s, 
maximal point g and a point of discontinuity d which divide 
the interval [0, 1] into four branches. We assign symbols 0, 1, 
2, 3 in turn for each branch where symbols 1 and 2 
correspond to increasing branches and are stipulated as even 
while symbol 0 and 3 correspond to decreasing branches and 
are odd. When K＜1, s→0, g→1，the symbols degenerate 
into 1 and 2. For a phase sequence Θ={θ0, θ1,, θ2,…, θn,…}, 
there is a corresponding symbolic sequence S={s0, s1,, s2,…, 
sn,…}, where si∈{0, 1, 2, 3} is determined by the branch in 
which θi locates. In practice, instead of directly measuring 
the phase θi, one obtains the symbol si by analyzing the 
logical relation of x(τ) and b(τ) when the IFM is in the firing 
process.  

Taking the derivative of eqn(2) with respect to θn, and 
setting the result to zero, one obtains 
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For dθn+1∕dθn = 0, θn is at extreme points s and g of circle 
map, while for 1Kcos(2πθn) = 0, the solutions represent that 
the derivative of the base threshold equals to the slop s0, 
marked as s/ and g/ in Fig.3. The first equation of eqn(7) 
indicates that these points are coincident, i.e., s=s/, g=g/. Thus, 
we may determine the range of phase θn by making logical 
judgment to IFM. 

 
FIGURE III. IFM CORRESPONDING TO CIRCLE MAP. 
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Within the ranges [0,s) and (g,1], 1 0n nd d   , and the 

gradient of b(τ) is greater than the slop s0. This can be done 
using a comparator to judge the states immediately following 
the firing of IFM. If b(τ+dτ) > x(τ+dτ), at the same time b(τ) 
is in its positive half cycle, then the phase point locates in 
[0,s), and the symbol is 0; otherwise the phase point locates 
in (g,1], and the symbol is 3. While in the ranges [s, d) and [d, 
g], the case is just the opposite. Furthermore, if the 
successive firing point is in the same period of b(τ) as former 
firing, the phase point locates in [s, d), and the symbol is 1; 
otherwise if the successive firing point is in the next period 
of b(τ), the phase point locates in [d, g] and the symbol is 2. 
Therefore, the symbolic sequence S={s0, s1,,s2,…,sn,…} can 
be obtained by differentiating the states after firing of IFM, 
and there is no need to measure phase sequence Θ={θ0, θ1,, 
θ2,…, θn,…}.  

If K<1, there is none of b(τ+)>x state, and only symbols 1 
and 2 may be acquired. When K>1, there are symbols 3 or 
4，and this time the circle map may be turned into chaos. As 
a result, it can also be done to estimate if the system may be 
chaotic from the sorts of symbols. 

B. Calculation of Rotations 

An important character of circle map is rotation. The 
definition of the rotation for the mapτn+1﹦f(τn) is given by 
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What is reflected in by the rotation ρ is the average 
increment of once iteration, with which it can be done to 
mainly estimate the behavior of the circle map under certain 
parameters and working conditions. In some sense it has the 
same function as Lyapunov exponent. However, it may be 
easier to obtain the rotation using symbolic sequence[10]. 
Each time when the symbols 2 or 3 are appeared in the 
sequence, it indicates that a period has turned over. Therefore, 
the rotation can be calculated by 
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Where N is the total number of symbols, N2 and N3 are 
the counts of symbols 2 and 3, respectively. The rotation of a 
period state may be expressed as a rational number p/q, 
which is easier to be obtained by eqn(9). The minimum 
symbols number of duplicate subsets in a symbolic sequence 
is its period q,  the sum of symbols 2 and 3 in a period equals 
p. and then ρ﹦p/q. When k ≤ 1, there are only two symbols 1 
and 2, the system can be in periodic or quasi-periodic state. 
On the other hand, when k > 1, there may be 3 or 4 symbols, 
and the system could be in periodic or chaotic states. So it is 
easier to distinguish the working states of IFM with symbolic 
sequence.    

 
FIGURE IV. ROTATION DISTRIBUTION. 

 
FIGURE V. LOCAL DISTRIBUTION OF ROTATION. 

Fig.4 shows the variation of rotation with s0 varying 
among [3.33, 1.43], which is computed by eqn(9) and quite 
resemble devil stair of circle map. For clarity, in fig.4 only 
rotations whose period less than 50 are drawn. Finer structure 
is shown in fig.5 where the range [2.86, 2.84] is extended, 
and periods are increased to 100. Theoretically, the periods 
may be infinity.    

C. The Order and the Distance of Symbols 

There is a correlative relationship between the symbolic 
sequences and the output signals of the system. Although 
signals are different in varying degrees, they have not orders, 
or they cannot compare the sizes with each other. According 
to the symbolic dynamical theory, for a dynamic system to 
which the equation is known, its symbolic sequences can not 
only compare the sizes with each other using certain rules, 
but define the distance between the sequences [12] as well. 

For the circle map, the order of a single symbol is the 
same as symbol values that is 0 < 1 < 2 < 3. The symbolic 
sequence is composed of many symbols, the order rule is 
deduced by the increasing and decreasing branches of the 
circle map [9]:  

If the longest common word of two symbolic sequences 
is even, the order of the sequence is according to the first 
different symbol; otherwise the order is in reverse with the 
first different symbol.  

Based on this rule, we propose a definition of the distance 
from symbolic sequence Sa={ai} to Sb={bi}, as follows:  
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Where Ai-1 and Bi-1 denote the parity of the first i1 
symbols of sequences Sa and Sb respectively. By this 
definition, for the circle map, it can be verified that when the 
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maximal sequence is Smax={303030…} and the minimal 
sequence is Smin={030303…}, then the distance of them is 1.  

D. The Relation of Initial Phase and Distance 

The phenomenon that sensitivity to initial conditions 
leads to chaotic system is well-known [13], and have been 
widely used in signals detection [2, 4]. So far these initial 
sensitivity based detections are all for amplitude maps, and 
the signals processed are also for amplitude. Frequently, 
however, for many time-domain signals, frequency and 
phase also contain valuable information. What the IFM is 
implemented for is a phase circle map. By increasing the 
amplitude of the base threshold to K > 1, the map becomes 
non-monotonic, thus there may be chaotic states. Chaotic 
circle map is much sensitive to the initial phase, based on this 
character, phase difference may be measured. The main 
principle of the phase measuring is similar to the one of 
amplitude. When the base threshold signal has a weak shift 
from referential signal, the output spike train of IFM will 
have a greater change, and corresponding symbol sequence 
will be more different, while the latest situation can be 
measured by distances.  

A more direct approach is the utilization of the distance 
formula in eqn(10), in which the deviation of initial phase is 
expressed by the distance. For example, if the symbolic 
sequence of a zero phase signal acts as reference, then the 
distance between a symbolic sequence of a delayed signal 
and the reference is used for the measurement of the phase 
difference. Next the relation between initial phase of the base 
threshold and the distance of symbolic sequences is revealed 
by computer simulation of the IFM. The parameters of IFM 
for the simulation experiment are s0 = 2, kb = 0.7, accordingly 
one obtains Ω=0.5, K=2.2, showing that the system is chaotic 
and the output is sensitive to initial phase. Let the initial 
phase equal to 0, one obtains the reference symbolic 
sequence symb0 = 01320132013201320. Then, from 0 to 
180o with an interval of 0.001o, the symbolic sequences are 
acquired, and the distances to reference symb0 is calculated. 
Fig.6 presents the relations of initial phase and the distance in 
different scales, from which the following conclusions can be 
drawn: (i) the distance increases monotonically with respect 
to the phase difference; (ii) the linear relationship is not 
satisfied; (iii) there are numerous irregular steps; and (iv) 
within different phase ranges, there is obvious self-similarity.  
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FIGURE VI: RELATIONS OF INITIAL PHASE AND DISTANCE. 

V. CONCLUSION 

In this paper, a simple model of phase circle map is 
constructed in time domain based on the Integrate-and-Fire 
Mode (IFM), and then several ways to study the circle map 
by using symbolic sequences acquired are presented. It can 
be observed from the preliminary results of the study that the 
method is simple and reliable. The method to determine the 
symbols according to the states makes the result not only 
precise but immune to noise as well, since there is no need to 
capture the spike train signals. Moreover, the symbolic 
sequences are digital data, and may be processed by 
computers easily. Consequently, the simple model as well as 
the symbolic tool provides a new and efficient way for 
theoretic and applied researches of the circle maps. 
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