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Abstract—Here we discussed the SIRS model of pulse 
spaying pesticides with vertical transmission and single 
species. Assuming that the incidence rate is periodically 
time-dependant and the total number of forest trees also 
changes over time, we studied the stability of impulsive 
model using piecewise continuous Lyapunov function 
and differential theories. Then we obtained the 
conditions of global asymptotic stability (GAS) for the 
periodic solution of pests being relatively or totally 
eradicated. Finally, we selected appropriate data and 
used numerical examples to show the correctness of the 
conclusions. 
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I. INTRODUCTION 

Using chemical control is one of the regular methods for 
modern control of plant diseases and insect pests, that is to 
say, people spray insecticide for plants to achieve the goal of 
killing pests. Therefore, in the same way to the epidemic 
model of [1-2],we can also set up SIRS model of plants 
disease and insect pests 

Many models suppose that the spraying insecticide 
behavior is a continuous process (see[3-6]).However, this 
assumption neither as cheap nor as environmentally benign 
[7]. Therefore, studying impulsive model has drawn more 
attention [8-10]. 

Assumpting the total number of forest plants is constant, 
people established many mathematical models(see[11-
13]).As the model can be reduced to planar system, they are 
easy to study and the results appear mostly intact. However if 
birth rate is not equal to mortality rate or it exists population 
migration and so on, the total number of forest plants is not 
constant and our models will not be reduced. As a 
consequence, we need to discuss our questions in three-
dimensional space and it has more practical meaning for 
human disease prevention and control.  

In this paper, based on the research of the human 
infectious diseases models, we study impulsive differential 
equation model on the spreading of plant diseases and insect 
pests under the condition of the total number of forest 
plants (t)N  is change with time. Considering vertical 

transmission(vertical transmission for plants is that the trees 
at the moment planted carry pests) and horizontal 
transmission, we spray insecticide for plants in fixed points 
t nT .Assuming the standard incidence of plants disease 

( )t periodically change over time, the period is T ,we set up 
impulsive spraying insecticide SIRS  model with single 
species.  

II. THE SIRS MODEL WITH PULSE SPRAYING PESTICIDE 

The plants in the presence of diseases and insect pests 

area can be devided into three types: Susceptible( S


), 

Infections( I


) and Recovered( R


).we suppose that the total 
number of forest plants (t)N  is not a constant, 

(t) (t) (t) (t)N S I R
  

   ,considering the standard 

incidence ( )
S

t I
N

 which periodically change with time and 

the pulse pesticide spraying strategy ,we construct the 
following SIRS model: 

1 1 1

1 2 1

1
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( ) ,
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( ) (1 ) ( ),
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   
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
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
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

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    (1) 

Where 
1b  is the coefficient of the trees planting. 

1( )d N is 

the natural cutting coefficient. 
2d  is coefficient of dying from 

disease.   is recovery rate. 1


is the average immune period. 

(0 1)    is the proportionality coefficient of the newly 
planted trees being normal trees. p , q  respectively represent 
the proportion of susceptible(S)and infections(I) being 
succeed in spraying pesticide at (n )t nT  . ( )t is constant 
or given by 
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( ) ( )t T t   ,
0 1( ) (1 cos 2 )t c c t    

If ( )t is a periodic function, 
0c  is a constant,

10 1c   

determines the amplitude of seasonal variation. T  is the time 
between two consecutive pulse vaccinations. T R ,when 

( )t is constant. T  ,when ( )t is a periodic function. 

From the model (1),we obtain, 

1 1 2

( )
( ( )) ( )

dN t
b d N N t d I

dt



   . 

Where 

(1)
1( )d N d is constant. When

2 0d  ,It exist exponential 

growth(when
1b d ),zero growth(when

1b d )or index 

decline(when
1b d ). 

(2)
1( ) ( )d N d N non-decreasing and make ( )N t logistic 

growth to an equilibrium *N .Of course, 
0( ( )) ( ( ))d N t d N t . 

III. THE EXISTENCE AND LAS OF DISEASE-FREE 

PERIODIC SOLUTION 

By substituting 
1 1 2

( )
( ( )) ( )

dN t
b d N N t d I

dt



   to model

（1）, we obtain:  

1 1 1 1

1 2 1

( ) ( )
( ) ( ) ( ) ( ) ,

( )

( )
( ) (1 ) ,

( )

( ) (1 ) ( ),

( ) (1 ) ( ).

d S t t
b N t d S b b I S I

dt N t
t nT

d I t
S I d d I b I I

dt N t

S t p S t
t nT

I t q I t

   

  


   


    

 


 


 
        
 

 
        


    

  
          (2) 

We make ( ( ), ( ), ( )) ( )( ( ), ( ), ( ))S t I t R t N t S t I t R t
  

 ,then 

1 1 2

( )
( ) ( )

dN t
b d d I N t

dt
    

and  

1 1 1 2

2
2 1 2

( )(1 ) ( ) ( ( ) ) ,

( ) ( ) ,

( ) (1 ) ( ),

( ) (1 ) ( ).

dS
b S b b I t d SI

dt t nT
dI

t SI d b I d I
dt

S t p S t
t nT

I t q I t

   

  





          
      


   
  

             

(3) 
This is similar to the literature, we can easily obtain one 

disease-free periodic solution *( ( ), 0)S t of system (3), 

We can conclude that: 

Theorem1 If the basic reproductive rate of 
plants (T) 1R  ,i.e. 

1 1

1

( ) ( )
2

( )
1 1

(1 )
,

( ) (1 )

b T b T

b T

mpe e

b T p e m

 



   

 




  
 

Where  

2 2 2 2
1 0 1 1 1 2 3 0 1

1 1 3 2 1

(c 4 ), ( c )(4 ),

, .

m c m

b d b

     
    

     

    
 

The disease-free periodic solution * *( ( ),0, ( ))S t R t is LAS. 

IV. THE GAS OF DISEASE-FREE PERIODIC SOLUTION 

making ( )
( )

( )

S t
S t

N t



 , thus the system(3) turns into:  

1 1 1 2

1 2 1

( ) ( )
( )(1 ) ( ) ( ( ) ) ,

( ) ( )

( ) ( ) ( ) ( ) ( ) (1 ) ,

( ) (1 ) ( ),

( ) (1 ) ( ).

dS I t I t
b S b b t d S

dt N t N t
t nT

d I
t S t I t d d I t b I I

dt

S t p S t
t nT

I t q I t

   

  

 


   



 


 
        
 




      


       

      (4) 

Considering the biological significance of system (4),we 
have invariant set: 

{( ( ), ( )) | ( ) [0,1], ( ) 1 ( )}.S t I t S t I t S t
  

      

Theorem 2 If 
2(t) d   and the characteristic index of 

the following system (5) 
1 2,   satisfy  1 2max | |,| | 1    

*
1

0 0

( ) ( ) ( ) ,

( ) (1 ) ( ),

( ) .

dY
t S t Y b Y t nT

dt

Y t q Y t t nT

Y t I

  



    
   
 


                         (5) 

The system (3) is GAS in the set  . 

Proof: Considering the subsystem of (3) , 

1 1 1 2

0 0

( )(1 ) ( ) ( ( ) ) ,

( ) (1 ) ( ),

( ) .

dS
b S b b I t d SI t nT

dt

S t p S t t nT

S t S

   



         
   
 


 

(6) 
because

1 1 0b b    , so when
2( )t d  , 

1 1 1 2 1( )(1 ) ( ) ( ( ) ) ( )(1 )b S b b I t d SI b S               

Thus we have the following impulsive differential system: 

1

0 0

( )(1 ),

( ) (1 ) ( ),

( ) .

dX
b X t nT

d t

X t p X t t nT

X t S





    
   
 


                              (7) 

We can get the analytical solution of this system. 
According to the comparison theory of impulsive differential 
system, we can know it satisfy: 
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*( ) ( ), ( ) ( )( )S t X t X t S t t    . 

From0 1, ( ) ( )I S t X t   , we know, 

2
2 1 2 1 2

1

( ) ( ) ( ) ( ) ( 1)

( ) ( )

t SI d b I d I t SI b I d I I

t XI b I

     
  

        
  

 

Considering the system: 

 
1

0 0

( ) ( ) ,

( ) (1 ) ( ),

( ) .

dY
t XY b Y t nT

dt

Y t q Y t t nT

Y t I

  



    
   
 


                 (8) 

We know that the system (8) has one equilibrium 
point ( ) 0Y t  , and ( ) ( )I t Y t .For *( ) ( )( )X t S t t  ,the 
system (10) and (6) have the same asymptotic property. If the 
condition of the theorem 2 is tenable, we obtain 

lim ( ) 0, limsup ( ) limsup ( ) 0
t t t

Y t I t Y t
  

   .For (t) 0I  , 

lim (t) 0
t

I


 . 

1

0 0

( )(1 ),

( ) (1 ) ( ),

( ) .

dS
b S t nT

dt

S t p S t t nT

S t S





    
   
 


                             (9) 

Therefore *( ) ( )( )S t S t t  , Further more, 

*( ( ), ( )) ( ( ),0)( )S t I t S t t   , 

i.e., the pest-eradication periodic solutions is GAS. 
In addition, if 

1 1( )b d N ,since
1 1 2 2

( )
( ( )) ( )

dN t
b d N N t d I d I

dt

 

     ,we 

get: 

0
0 2( ) ( ) exp( ( ) )

t

t
N t N t d I s ds    

Therefore we know 

0
0 2( ) ( )exp( ( ) ) 0( )

t
N t N t d I s ds t


    ,and 

( ) ( ) ( )I t I t N t


 , ( ) 0I t


 ,i.e., the total eradication of pests is 
guaranteed. however if 

1b d or
1( ) ( )d N d N ,i.e., the 

growth of plants is exponential or Logistic, the total 
eradication of pests can not be guaranteed. For these two 
cases, as follows, we give the conditions of GAS for the 
periodically total eradication solutions. 

Theorem 3 If
2( )t d  and one of the following 

conditions is founding: 

(1) the growth of forest plants is exponential and 

2 0d  , 

(2) the growth of forest plants is Logistic and 
2 0d  , 

(3) the conditions of the GAS for the periodic solution 
of pests being totally eradicated in   is that the 
characteristic index

1 , 
2 of the following system (11) 

satisfy : 

 1 2max | |,| | 1                                      (10) 

*
0 2 1

0 0

( ) ( ( ) ) (1 ) ,

( ) (1 ) ( ) ,

( ) .

dZ
t S Z d N d Z b Z Z t nT

dt

Z t q Z t t nT

Z t I

  



       
   
 


    

(11) 
Where 

0 0( )N t N , if condition (1) is founding, 

0( )N t d .if condition (2) 

 is founding, 
0 0( )N t N .  

Proof: since
0( ) ( )N t N t  ,we gain: 

2 1

2 1

0 2 1

( )
( ( ) ) (1 )

( )

( ) ( ( ) ) (1 )

( ) ( ( ( )) ) (1 )

d I t
S I d N d I b I I

dt N t

t S I d N d I b I I

t S I d N t d I b I I

  

  

  


    

   

   

     

     

     

 

If inequation (10) is tenable, similar to the proof of 

theorem 2,we obtain ( ) 0( )I t t


   ,therefore, 

1 1 2

( )
( ( )) ( )

dN t
b d N N t d I

dt



    is asymptotically stable 

and ( ) ( )N t t   or *( ) ( )N t N t  ,thus  

1 1 2

( ) ( )
( ) ( ( ) ) 0( )

( ) ( )

I t I t
b b t d S t

N t N t
  

 

      , 

so 
1( )(1 )( )

dS
b S t

dt
     ,and *( ) ( )( )S t S t t  . 

V. TWO EXAMPLES  

A.  

We make 

1 3 0 1 1

2

0.8, 0.12, 0.07, 0.05, 0.4,

0.02, 0.2, 0.3, 0.7, 1

c c b

d p q T

  
 

     

     
 

By substituting above coefficient to model (3),we obtain: 

2

0.8(1 ) 0.72 [0.07(1 0.05cos 2 ) 0.02] ,

0.07(1 0.05cos 2 ) 0.12 0.02 ,

( ) 0.7 ( ),

( ) 0.6 ( ).

dS
S I t SI

dt t n
dI

t SI I I
dt

S t S t
t n

I t I t









        
     


  
 

  

（12） 
Solving ,we gain 

1 23, 2m m  ,therefore 

( ) 0.5625 1R T    and it satisfy the conditions of theorem 
1.Then we simulate solution curve of model(3):  
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FIGURE I. THE SOLUTION CURVE OF 

( ), ( )S t I t . 

As you can see in the above figures, the system has one 
disease-free periodic solution *( ( ),0)S t , and it is LAS. 

B.  

We make 

1 3 0 1 1

2

0.4, 0.707, 0.07, 0.1, 0.25, 0.15,

0.35, 0.3, 0.2, 0.2, 0.4

c c b

d p q

  
 

     

    
 

By substituting above coefficient to model (3),we gain: 

1 216, 12m m  , 

therefore ( ) 1.13 1R T   , Then we simulate solution curve 
of model(3): 

 
FIGURE II. THE SOLUTION CURVE OF 

( ), ( )S t I t . 

As you can see in the above figures, the system has one 
disease-free periodic solution *( ( ),0)S t  and 

*( ) ( )( )S t S t t  , however ( )I t does not go to zero 
asymptotically. So the theorem 1 is correct. 

We can use the same method to testify theorem 2 and 
theorem 3 and I will not repeat them now. 
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