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Abstract-In this paper, an interval method for the dynamic
response of structures with uncertain parameters is proposed.
The structural physical parameters and loads are considered as
interval variables. The structural stiffness matrix, mass matrix
and loading vectors are described as the sum of two parts
corresponding to the deterministic matrix and the uncertainty
of the interval parameters. The interval problem is then
transformed into an approximate deterministic problem. The
Laplace transform is used to convert the equations of the
dynamic system into linear algebra equations. The effectiveness
of the proposed method is demonstrated by a numerical
example of a three-story structure. The results show that the
range between upper and lower bounds of dynamic responses
due to uncertain system parameters is narrow and acceptable.
Since the presented method neglects the second order terms in
the expansion of functions, the application of the approach is
limited to the cases where the uncertainties of the parameters
are small.
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I. INTRODUCTION

In engineering design, it is important to calculate
response quantities such as the displacement, stress and
vibration responses against a given set of design parameters.
However, in most practical situations, the structural
parameters are often uncertain, such as the inaccuracy of the
measurement, errors in the manufacturing and assembly
process, invalidity of some components and uncertainty in
boundary conditions etc. The uncertainties of structural
parameters may lead to large and unexpected excursion of
responses that may lead to drastic reduction in accuracy and
precision of the operation. Therefore, the concept of
uncertainty plays an important role in the investigation of
various engineering problems. A number of methods have
been developed which include uncertain model properties in
the finite element analysis and aim at the quantification of
the uncertainty on the analysis result. For problems with
distribution description of the variety in the system
parameters, probability theory is the traditional approach to
handle uncertainty. One of the classical probabilistic methods
(Au 2004[1]) is the Monte Carlo simulation or the stochastic
finite element method. However, probabilistic modeling
cannot handle situations with incomplete or little information
on which to evaluate a probability, or when that information
is nonspecific, ambiguous, or conflicting. Therefore, in that
case, the interval method is widely used. In the interval
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analysis method, an uncertain structural parameter can be
described as an interval variable and only its lower and upper
bounds are required.

Since the mid-1960s, a new method called the interval
analysis has appeared. Moore [8](1966), Alefeld and
Herzberger[2](1983)have done the pioneering work.
Mathematically, linear interval equations and nonlinear
interval equation have been resolved partly. Because of the
complexity of the algorithm, it is difficult to apply these
results to practical engineering problems. Recently, a few of
the interval analysis methods (Chen et al 2002[3]; Qiu and
Wang 2003[9], 2005[10]; Chen and Wu 2004[4]; Chen and
Zhang 2006[5]) were presented to make the interval method
easier to deal with the dynamic response analysis for the
complex structures with interval parameters. Although plenty
of effort has been made and improvement has been achieved
in the interval method to solve the uncertainty problems, the
overestimation problem still existed in their studies. Hence, it
is necessary to develop an effective method to solve the
overestimation in the interval mathematics in the structural
dynamic analysis.

In this paper, a new interval analysis method will be
presented. A brief review of the interval mathematics is
given first. The formulation of the dynamic response analysis
for structures with interval parameters is then presented. The
structural stiffness matrix, mass matrix and loading vectors
are described as the sum of two parts corresponding to the
deterministic matrix and the uncertainty of the interval
parameters. Later, the interval problem is transformed into an
approximate deterministic problem. The Laplace transform is
used to convert the equations of the dynamic system into
linear algebra equations. Finally, a three-story structure for
the cases with and without damping is studied and the
dynamic responses of this structure are calculated to
demonstrate the applicability of the presented method.

Il.  INTERVAL ARITHMETIC

In this paper, real quantities will be introduced in non-
bold face and interval quantities (interval number, interval
vector, interval matrix) will be denoted in bold face by
attaching a superscript “I” (Hansen 1992)[6],

x! =[x, x], {xeR: x < x < ¥},

)



Wherex and x are the lower and upper bounds of the
interval number x! respectively. The set of all the closed real
intervals is denoted by I(R).

The mid-point and uncertainty of an interval x! are
defined as

x¢ = mid(x!) = %(g + x) )
And

Ax = rad(x!) = %(3? -x) 3)
Respectively. So an interval x! can be expressed as

x! = [x€ — Ax, x¢ + Ax] 4)

The relative uncertainty of x! is defined as
I
5 =25 )

[x€]

So an interval x! can also be expressed as
xl = [x€ — §|x€|,x€ + 6|x€|] = x€ + x°&! (6)

An interval vector is a vector whose components are
interval numbers. An interval matrix is a matrix whose
elements are interval numbers. The set of m X n interval
matrices is denoted by IR™™. An interval matrix A’ =
[4, 4] = (A];) is interpreted as a set of real m x n matrices
by the convention,

A ={A € R™MA; € Afjfori=1,..,m; j=1,..n} (7)

An interval matrix is one that contains all real matrices,
whose elements are obtained from all possible values
between the lower and upper bound of its interval elements.

The mid-matrix and uncertainty of an interval matrix A’
are defined as

A =(A+4) ®)
And

AA ==(A-4) )
Respectively. So an interval matrix can be expressed as

Al = A° + AA! = [AC — AA, A° + AA] (10

Where AAT = [—-AA, AA).
Interval arithmetic operations on real numbers can be
explicitly expressed as follows,

X +y' =[x +yx+7] (11)

x’—yl=[£—}7.9_f_z]: (12)

xxyl = [min {g_/ Xy, xy, XX} , max {Q Xy, xy, fz}],(lS)
D' =[xLxif x>00rE<0,  (14)

xl -yl =l x (D)7, (15)
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For the elementary interval operations, division by an
interval containing zero is not defined. Note that any real
number r is denoted by a degenerate interval [r,r].

1. STRUCTURAL DYNAMIC RESPONSE ANALYSIS WITH
INTERVAL PARAMETERS

For a system under external loading, the general interval
dynamic equation (Meirovoth 1980[7]; Weaver and Johnston
1987[11]) with n degrees of freedom can be expressed as
follows,

[M']X' () + [C'1X'(0) + [K'1X"(t) = P'(t),  (16)

Where [M'] = (m{), [C"] = (c};) and[K'] = (ki;) are
the interval mass matrix, damping matrix and stiffness matrix;
P!(t) = (pl(t)) is the external load vector; X' (t) = (x!(t)),
XI(t) = (xl(®))and X'(t) = (¥i(t)) are the displacement,
velocity and acceleration vectors of the finite element
assemblage, respectively. The damping matrix [€'] can be
written as,

[C'] = a[K"] + b[M'], 17)

Where a and b are the coefficients of Rayleigh Damping.

The Laplace transform is used in this study to obtain the
solution of Eq. (16). The Laplace transform is defined as
follows,

F(s) = LF(O)} = [ e~stf(t)dt

Where the parameter s is a complex number, s =y + iw,
with real numbers y and w. And the inverse Laplace
transform is defined as follows,

(18)

f(O) = LHF(S)) = 25 [ e F(s)ds

Y—iw (19)
Where y is a real number so that the contour path of
integration is in the region of convergence of F(s) normally
requiring y > Re(S,) for every singularity S,, of F(s) and
i? = —1. When using Laplace transform for Eqg. (16), the
Laplace transform of X! (t) and X’ (t) can be expressed as,

LX)} = s2LI(s) — sX1(0) — X' (0) (20)

And
LX)} = sL(s) — X'(0) (21)
After  using  Laplace transform, Eq. (16)
becomes, ([M"s% + [€"]s + [K'DL(s) = FI(s) +

(IM"]s + [€"DX'(0) + [M"]X"(0) (22)

Where £I(s),F!(s) , X'(0) and X'(0) are the Laplace
transform of X!(t), the Laplace transform of P/(t), the
system initial displacement and the system initial velocity,
respectively. If all the initial conditions of the structure are
zero, that means X’(0) = 0, X’(0) = 0 and X(0) = 0, Eq.
(22) can be written as,

([M'"]s* + [C"]s + [K']L'(s) = F'(s)  (23)

Using the Rayleigh Damping Eq. (17), Eq. (23) becomes,



([M'](s* + bs) + [K"](as + 1)) LI(s) = Fi(s) (24)

The interval matrix £T,[M'], [K'] and Fare expressed
with mid-matrix and uncertainty, which are,

L' =rc+ ALl (25)
[M'] = M€ + AM! (26)
[K'] = K¢ + AKT (27)

F' = F¢ + AF! (28)

Substituting Egs. (25), (26), (27) and (28) into Eq. (24), it
leads to,

[M¢(s? + bs) + K¢(as + 1)]£¢(s)

+[AM!(s? + bs) + AK'(as + 1)]£6(s)
+ [M¢(s% + bs) + K¢(as + 1)]AL!(s)

+[AM!(s? + bs) + AK'(as + 1)]ALI(s) = F¢(s) +
AF!(s) (29)

It can be found that,
[M¢(s? + bs) + K¢(as + 1)]£¢(s) = F(s) (30)

If the second order of uncertain terms in Eq. (29) are
neglected, and Eq. (30) is considered, Eq. (29) can be written
as,

A x AL(s) = AF'(s) — [AM!(s? + bs) + AK!(as +
D]LE(s) (31)

A=M(s?+bs)+K(as + 1) (32)

Therefore, from Eq. (31), the uncertainty of £(s) can be
obtained,

ALI(s) = A7'AF!(s) — A~*'AM!(s? + bs) L (s) —
A7TAK (as + 1)LE(s) (33)

After taking the inverse Laplace transform of each term
of Eg. (33), the dynamic response of the structure can be
obtained,

AX'(t) = L7Y{A1AF!(s5)}

—L7YATTAM! (s% + bs)LE(s)} — L~H{A 'AK  (as +
L)} (34)

It should be noted that it is difficult to integrate the terms
with uncertainty. Thus, a special treatment of matrix is used
to extract the uncertainties outside the integration, for
example the term A='AM'(s? + bs)LC(s) which can be
shown as below,

L7HATTAM! (s? + bs)LE(s)}
= L7YATY(s? + bs)M 8 LE(s5)}

= L7YHAY(s? + bs)M L (5)}8""  (35)
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Where£¢ (s) and 8" are the new matrix for substituting
the term 67£¢(s) , and the matrix dimension of £¢(s) and
8" are same as 8'and L¢(s), respectively.

IVV. NUMERICAL SIMULATIONS

In order to illustrate the effectiveness of the presented
interval method for the dynamic responses of the structures
with uncertainty, a three-story frame tower structure without
damping which is shown in Figure 1 is analyzed. Each story
has the same mass M; = M, = M; = 100 kg with 5%
uncertainty. The system stiffness is K; =K, = K; =
1000 KN/m with 10% uncertainty. The stiffnessand the
mass density of each element are assumed to vary
independently.It is assumed that there is a harmonic external
loading F = cos(3t) acting on the first story in horizontal
direction with the initial conditions x!(0) = 0, £/(0) = 0.
The displacement response of the first story in the horizontal
direction is calculated and shown in Figure 2 and Figure 3.
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FIGURE I. THREE-STORY FRAME TOWER.
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FIGURE Il. RESPONSE OF FIRST STORY WITHOUT DAMPING IN
HORIZONTAL DIRECTION IN 3 SECONDS.

The response range of the first story in the horizontal
direction in the first 3 seconds is shown in Figure 2. In the
first 3 seconds that is the region before divergent response,
the variations of the upper and lower bounds of the dynamic
response are small. That is to say, the presented method has a
good robustness with respect to interval parameters. Figure 3
describes the response range of the first story in the
horizontal direction in the first 10 seconds. It can be found
that the dynamic responses of the undamped structure are
divergent due to interval parameters. This divergent
phenomenon is caused by the free vibration of the structure.
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FIGURE Ill. RESPONSE OF FIRST STORY WITHOUT DAMPING IN

HORIZONTAL DIRECTION IN 10 SECONDS.

Consider the same structure shown in Figure 1. The
damping matrix is assumed to be [C'] = 0.01 x [K'] + 1 x
[M']. The displacement response of the first story in the
horizontal direction is shown in Figure 4.
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FIGURE IV. RESPONSE OF FIRST STORY WITH DAMPING IN
HORIZONTAL DIRECTION IN 10 SECONDS.

In Figure 4, the vertical axis is the displacement of the
first story of the structure in the horizontal direction and the
horizontal axis is the time from 0 to 13 seconds. It can be
observed that the dynamic responses of the structure are
convergent under damping. This is different from the
undamped system. The reason of this phenomenon is that the
responses of damping system are controlled by the external
force. Comparing the variations of the upper and lower
bounds, the presented method holds the high computing
accuracy in interval calculation.

V. CONCLUSION

A new interval method has been presented to determine
the range of vibration responses of structures with interval
parameters. The effectiveness of the proposed method has
been demonstrated by a numerical example of a three-story
structure. The results have shown that the range between
upper and lower bonds of dynamic responses due to
uncertain system parameters is narrow and acceptable. Since
the presented method neglects the higher order terms in the
expansion of functions, the application of the approach is
limited to the cases where the uncertainties of the interval
parameters are small (<10%).
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