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Abstract-In this paper, an interval method for the dynamic 
response of structures with uncertain parameters is proposed. 
The structural physical parameters and loads are considered as 
interval variables. The structural stiffness matrix, mass matrix 
and loading vectors are described as the sum of two parts 
corresponding to the deterministic matrix and the uncertainty 
of the interval parameters. The interval problem is then 
transformed into an approximate deterministic problem. The 
Laplace transform is used to convert the equations of the 
dynamic system into linear algebra equations. The effectiveness 
of the proposed method is demonstrated by a numerical 
example of a three-story structure. The results show that the 
range between upper and lower bounds of dynamic responses 
due to uncertain system parameters is narrow and acceptable. 
Since the presented method neglects the second order terms in 
the expansion of functions, the application of the approach is 
limited to the cases where the uncertainties of the parameters 
are small. 
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I. INTRODUCTION 
In engineering design, it is important to calculate 

response quantities such as the displacement, stress and 
vibration responses against a given set of design parameters. 
However, in most practical situations, the structural 
parameters are often uncertain, such as the inaccuracy of the 
measurement, errors in the manufacturing and assembly 
process, invalidity of some components and uncertainty in 
boundary conditions etc. The uncertainties of structural 
parameters may lead to large and unexpected excursion of 
responses that may lead to drastic reduction in accuracy and 
precision of the operation. Therefore, the concept of 
uncertainty plays an important role in the investigation of 
various engineering problems. A number of methods have 
been developed which include uncertain model properties in 
the finite element analysis and aim at the quantification of 
the uncertainty on the analysis result. For problems with 
distribution description of the variety in the system 
parameters, probability theory is the traditional approach to 
handle uncertainty. One of the classical probabilistic methods 
(Au 2004[1]) is the Monte Carlo simulation or the stochastic 
finite element method. However, probabilistic modeling 
cannot handle situations with incomplete or little information 
on which to evaluate a probability, or when that information 
is nonspecific, ambiguous, or conflicting. Therefore, in that 
case, the interval method is widely used. In the interval 

analysis method, an uncertain structural parameter can be 
described as an interval variable and only its lower and upper 
bounds are required. 

Since the mid-1960s, a new method called the interval 
analysis has appeared. Moore [8](1966), Alefeld and 
Herzberger[2](1983)have done the pioneering work. 
Mathematically, linear interval equations and nonlinear 
interval equation have been resolved partly. Because of the 
complexity of the algorithm, it is difficult to apply these 
results to practical engineering problems. Recently, a few of 
the interval analysis methods (Chen et al 2002[3]; Qiu and 
Wang 2003[9], 2005[10]; Chen and Wu 2004[4]; Chen and 
Zhang 2006[5]) were presented to make the interval method 
easier to deal with the dynamic response analysis for the 
complex structures with interval parameters. Although plenty 
of effort has been made and improvement has been achieved 
in the interval method to solve the uncertainty problems, the 
overestimation problem still existed in their studies. Hence, it 
is necessary to develop an effective method to solve the 
overestimation in the interval mathematics in the structural 
dynamic analysis.  

In this paper, a new interval analysis method will be 
presented. A brief review of the interval mathematics is 
given first. The formulation of the dynamic response analysis 
for structures with interval parameters is then presented. The 
structural stiffness matrix, mass matrix and loading vectors 
are described as the sum of two parts corresponding to the 
deterministic matrix and the uncertainty of the interval 
parameters. Later, the interval problem is transformed into an 
approximate deterministic problem. The Laplace transform is 
used to convert the equations of the dynamic system into 
linear algebra equations. Finally, a three-story structure for 
the cases with and without damping is studied and the 
dynamic responses of this structure are calculated to 
demonstrate the applicability of the presented method. 

II. INTERVAL ARITHMETIC 
In this paper, real quantities will be introduced in non-

bold face and interval quantities (interval number, interval 
vector, interval matrix) will be denoted in bold face by 
attaching a superscript “I” (Hansen 1992)[6], ࢞ࡵ ൌ ሾݔ, ݔ :ܴ߳ݔ} ,[ҧݔ ൑ ݔ ൑  ҧሽ,                  (1)ݔ
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Whereݔ and ݔҧ  are the lower and upper bounds of the 
interval number ࢞ࡵ respectively. The set of all the closed real 
intervals is denoted by I(R). 

The mid-point and uncertainty of an interval ࢞ࡵ  are 
defined as ݔ௖ ൌ midሺ࢞ࡵሻ ൌ ଵଶ ሺݔ ൅  ҧሻ                 (2)ݔ

And ∆ݔ ൌ radሺ࢞ࡵሻ ൌ ଵଶ ሺݔҧ െ  ሻ                 (3)ݔ

Respectively. So an interval ࢞ࡵ can be expressed as ࢞ࡵ ൌ ሾݔ௖ െ ,ݔ∆ ௖ݔ ൅  ሿ                     (4)ݔ∆

The relative uncertainty of ࢞ࡵ is defined as ߜ ൌ  ௫೎|                                      (5)|ࡵ࢞∆

So an interval ࢞ࡵ can also be expressed as ࢞ࡵ ൌ ሾݔ௖ െ ,|௖ݔ|ߜ ௖ݔ ൅ ௖|ሿݔ|ߜ ൌ ௖ݔ ൅  (6)        ࡵࢾ௖ݔ

An interval vector is a vector whose components are 
interval numbers. An interval matrix is a matrix whose 
elements are interval numbers. The set of ݉ ൈ ݊  interval 
matrices is denoted by ࡾࡵ௠ൈ௡ . An interval matrix ࡵ࡭ ൌൣܣ, ҧ൧ܣ ൌ ሺࡵ࢐࢏࡭ ሻ is interpreted as a set of real ݉ ൈ ݊ matrices 
by the convention, ࡵ࡭ ൌ ሼܣ א ܴ௠ൈ௡|ܣ௜௝ א ࡵ࢐࢏࡭  for ݅ ൌ 1, … , ݉;  ݆ ൌ 1, … ݊ሽ   (7) 

An interval matrix is one that contains all real matrices, 
whose elements are obtained from all possible values 
between the lower and upper bound of its interval elements. 

The mid-matrix and uncertainty of an interval matrix ࡵ࡭ 
are defined as ܣ௖ ൌ ଵଶ ሺܣ ൅  ҧሻ                        (8)ܣ

And ∆ܣ ൌ ଵଶ ሺܣҧ െ  ሻ                        (9)ܣ

Respectively. So an interval matrix can be expressed as ࡵ࡭ ൌ ௖ܣ ൅ ࡵ࡭∆ ൌ ሾܣ௖ െ ,ܣ∆ ௖ܣ ൅  ሿ         (10)ܣ∆

Where ∆ࡵ࡭ ൌ ሾെ∆ܣ,  .ሿܣ∆
Interval arithmetic operations on real numbers can be 

explicitly expressed as follows, ࢞ࡵ ൅ ࡵ࢟ ൌ ሾݔ ൅ ,ݕ ҧݔ ൅ ࡵ࢞ ത],            (11)ݕ െ ࡵ࢟ ൌ ሾݔ െ ,തݕ ҧݔ െ ࡵ࢞ (12)             ,[ݕ ൈ ࡵ࢟ ൌ ቂmin ቄݕݔ, ,തݕҧݔ ,തݕݔ ቅݕҧݔ , max ቄݕݔ, ,തݕҧݔ ,തݕݔ ሻିଵࡵቅቃ,(13) ሺ࢞ݕҧݔ ൌ ,ҧିଵݔൣ ݔ  ଵ൧ifିݔ ൐ ҧݔ ݎ݋ 0 ൏ ࡵ࢞ (14)         ,0 ൊ ࡵ࢟ ൌ ࡵ࢞ ൈ ሺ࢟ࡵሻିଵ,         (15) 

For the elementary interval operations, division by an 
interval containing zero is not defined. Note that any real 
number r is denoted by a degenerate interval [r,r]. 

III. STRUCTURAL DYNAMIC RESPONSE ANALYSIS WITH 
INTERVAL PARAMETERS 

For a system under external loading, the general interval 
dynamic equation (Meirovoth 1980[7]; Weaver and Johnston 
1987[11]) with n degrees of freedom can be expressed as 
follows, ሾࡵࡹሿࢄሷ ሺ࢚ሻࡵ ൅ ሾࡵ࡯ሿࢄሶ ሺ࢚ሻࡵ ൅ ሾࡵࡷሿࡵࢄሺ࢚ሻ ൌ  ሺ࢚ሻ,        (16)ࡵࡼ

Where ሾࡵࡹሿ ൌ ሺࡵ࢐࢏࢓ ሻ , ሾࡵ࡯ሿ ൌ ሺࡵ࢐࢏ࢉ ሻ  and ሾࡵࡷሿ ൌ ሺࡵ࢐࢏࢑ ሻ  are 
the interval mass matrix, damping matrix and stiffness matrix; ࡵࡼሺ࢚ሻ ൌ ሺࡵ࢏࢖ሺ࢚ሻሻ is the external load vector; ࡵࢄሺ࢚ሻ ൌ ሺ࢞ࡵ࢏ሺ࢚ሻሻ, ࢄሶ ሺ࢚ሻࡵ ൌ ሺ ሶ࢞ ሺ࢚ሻሻࡵ࢏ and ࢄሷ ሺ࢚ሻࡵ ൌ ሺ ሷ࢞ ሺ࢚ሻሻࡵ࢏  are the displacement, 
velocity and acceleration vectors of the finite element 
assemblage, respectively. The damping matrix [ࡵ࡯] can be 
written as, ሾࡵ࡯ሿ ൌ ܽሾࡵࡷሿ ൅ ܾሾࡵࡹሿ,                    (17) 

Where a and b are the coefficients of Rayleigh Damping.  

The Laplace transform is used in this study to obtain the 
solution of Eq. (16). The Laplace transform is defined as 
follows, ܨሺݏሻ ൌ ࣦሼ݂ሺݐሻሽ ൌ ׬ ݁ି௦௧݂ሺݐሻ݀ݐାஶ଴         (18) 

Where the parameter s is a complex number, ݏ ൌ ߛ ൅ ݅߱, 
with real numbers ߛ  and ߱ . And the inverse Laplace 
transform is defined as follows, ݂ሺݐሻ ൌ ࣦିଵሼܨሺݏሻሽ ൌ ଵଶగ௜ ׬ ݁௦௧ܨሺݏሻ݀ݏఊା௜ఠఊି௜ఠ             (19) 

Where ߛ  is a real number so that the contour path of 
integration is in the region of convergence of F(s) normally 
requiring ߛ ൐ ܴ݁ሺܵ௣ሻ  for every singularity ܵ௣  of F(s) and ݅ଶ ൌ െ1. When using Laplace transform for Eq. (16), the 
Laplace transform of ࢄሷ ሶࢄ ሺ࢚ሻ andࡵ ሷࢄሺ࢚ሻ can be expressed as, ࣦ൛ࡵ ሺ࢚ሻൟࡵ ൌ ሻݏሺࡵଶखݏ െ ሺ0ሻࡵࢄݏ െ ሶࢄ  ሺ0ሻ            (20)ࡵ

And ࣦ൛ࢄሶ ሺ࢚ሻൟࡵ ൌ ሺsሻࡵखݏ െ ሶࢄ  ሺ0ሻ             (21)ࡵ

After using Laplace transform, Eq. (16) 
becomes, ሺሾࡵࡹሿݏଶ ൅ ሾࡵ࡯ሿݏ ൅ ሾࡵࡷሿሻखࡵሺ࢙ሻ ൌ ሺ࢙ሻࡵࡲ ൅ሺሾࡵࡹሿݏ ൅ ሾࡵ࡯ሿሻࡵࢄሺ0ሻ ൅ ሾࡵࡹሿࢄሶ  ሺ0ሻ                                   (22)ࡵ

Where खࡵሺ࢙ሻ ሺ࢙ሻࡵࡲ, ሺ0ሻࡵࢄ ,   and ࢄሶ ሺ0ሻࡵ  are the Laplace 
transform of ࡵࢄሺtሻ , the Laplace transform of ࡵࡼሺ࢚ሻ , the 
system initial displacement and the system initial velocity, 
respectively. If all the initial conditions of the structure are 
zero, that means ࡵࢄሺ0ሻ ൌ ሶࢄ ,0 ሺ0ሻࡵ ൌ 0 and ࢄሷ ሺ0ሻࡵ ൌ 0, Eq. 
(22) can be written as, ሺሾࡵࡹሿݏଶ ൅ ሾࡵ࡯ሿݏ ൅ ሾࡵࡷሿሻखࡵሺ࢙ሻ ൌ  ሺ࢙ሻ       (23)ࡵࡲ

Using the Rayleigh Damping Eq. (17), Eq. (23) becomes, 
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ሺሾࡵࡹሿሺݏଶ ൅ ሻݏܾ ൅ ሾࡵࡷሿሺܽݏ ൅ 1ሻሻखࡵሺ࢙ሻ ൌ  ሺ࢙ሻ       (24)ࡵࡲ

The interval matrix खࡵ ,ሾࡵࡹሿ, ሾࡵࡷሿ and ࡵࡲ are expressed 
with mid-matrix and uncertainty, which are, खࡵ ൌ ࣦ௖ ൅ ∆ख(25)                                 ࡵ ሾࡵࡹሿ ൌ ௖ܯ ൅ ሿࡵࡷሾ (26)                             ࡵࡹ∆ ൌ ௖ܭ ൅ ࡵࡲ (27)                              ࡵࡷ∆ ൌ ௖ܨ ൅  (28)                                ࡵࡲ∆

Substituting Eqs. (25), (26), (27) and (28) into Eq. (24), it 
leads to, ሾܯ௖ሺݏଶ ൅ ሻݏܾ ൅ ݏ௖ሺܽܭ ൅ 1ሻሿࣦ௖ሺݏሻ ൅ሾ∆ࡵࡹሺݏଶ ൅ ሻݏܾ ൅ ݏሺܽࡵࡷ∆ ൅ 1ሻሿࣦ௖ሺݏሻ൅ ሾܯ௖ሺݏଶ ൅ ሻݏܾ ൅ ݏ௖ሺܽܭ ൅ 1ሻሿ∆खࡵሺ࢙ሻ ൅ሾ∆ࡵࡹሺݏଶ ൅ ሻݏܾ ൅ ݏሺܽࡵࡷ∆ ൅ 1ሻሿ∆खࡵሺ࢙ሻ ൌ ሻݏ௖ሺܨ ൅∆ࡵࡲሺݏሻ                         (29) 

It can be found that, ሾܯ௖ሺݏଶ ൅ ሻݏܾ ൅ ݏ௖ሺܽܭ ൅ 1ሻሿࣦ௖ሺݏሻ ൌ  ሻ (30)ݏ௖ሺܨ

If the second order of uncertain terms in Eq. (29) are 
neglected, and Eq. (30) is considered, Eq. (29) can be written 
as, ܣ ൈ ∆खࡵሺ࢙ሻ ൌ ሻݏሺࡵࡲ∆ െ ሾ∆ࡵࡹሺݏଶ ൅ ሻݏܾ ൅ ݏሺܽࡵࡷ∆ ൅1ሻሿࣦ௖ሺݏሻ                     (31) ܣ ൌ ଶݏ௖ሺܯ ൅ ሻݏܾ ൅ ݏ௖ሺܽܭ ൅ 1ሻ          (32) 

Therefore, from Eq. (31), the uncertainty of खࡵሺ࢙ሻ can be 
obtained, ∆खࡵሺ࢙ሻ ൌ ሻݏሺࡵࡲ∆ଵିܣ െ ଶݏሺࡵࡹ∆ଵିܣ ൅ ሻݏሻࣦ௖ሺݏܾ െିܣଵ∆ࡵࡷሺܽݏ ൅ 1ሻࣦ௖ሺݏሻ                                    (33) 

After taking the inverse Laplace transform of each term 
of Eq. (33), the dynamic response of the structure can be 
obtained, ∆ࡵࢄሺ࢚ሻ ൌ ࣦିଵሼିܣଵ∆ࡵࡲሺݏሻሽ െࣦିଵሼିܣଵ∆ࡵࡹሺݏଶ ൅ ሻሽݏሻࣦ௖ሺݏܾ െ ࣦିଵሼିܣଵ∆ࡵࡷሺܽݏ ൅1ሻࣦ௖ሺݏሻሽ                               (34) 

It should be noted that it is difficult to integrate the terms 
with uncertainty. Thus, a special treatment of matrix is used 
to extract the uncertainties outside the integration, for 
example the term ିܣଵ∆ࡵࡹሺݏଶ ൅ ሻݏሻࣦ௖ሺݏܾ which can be 
shown as below, ࣦିଵሼିܣଵ∆ࡵࡹሺݏଶ ൅ ሻሽൌݏሻࣦ௖ሺݏܾ ࣦିଵሼିܣଵሺݏଶ ൅ ሻሽ ൌݏ௖ሺࣦࡵࢾ௖ܯሻݏܾ ࣦିଵሼିܣଵሺݏଶ ൅  ᇱ       (35)ࡵࢾሻሽݏ௖ࣦ௖ᇱሺܯሻݏܾ

Whereࣦ௖ᇱሺݏሻ and ࡵࢾᇱ are the new matrix for substituting 
the term ࣦࡵࢾ௖ሺݏሻ , and the matrix dimension of ࣦ௖ᇱሺݏሻ and ࡵࢾᇱare same as ࡵࢾand ࣦ௖ሺݏሻ, respectively. 

IV. NUMERICAL SIMULATIONS 
In order to illustrate the effectiveness of the presented 

interval method for the dynamic responses of the structures 
with uncertainty, a three-story frame tower structure without 
damping which is shown in Figure 1 is analyzed. Each story 
has the same mass ܯଵ ൌ ଶܯ ൌ ଷܯ ൌ 100 kg  with 5% 
uncertainty. The system stiffness is ܭଵ ൌ ଶܭ ൌ ଷܭ ൌ1000 KN/m  with 10% uncertainty. The stiffnessand the 
mass density of each element are assumed to vary 
independently.It is assumed that there is a harmonic external 
loading ܨ ൌ  ሻ acting on the first story in horizontalݐሺ3ݏ݋ܿ
direction with the initial conditions ࢞ࡵሺ0ሻ ൌ 0, ሶ࢞ ሺ0ሻࡵ ൌ 0 . 
The displacement response of the first story in the horizontal 
direction is calculated and shown in Figure 2 and Figure 3. 

 

FIGURE I. THREE-STORY FRAME TOWER. 

 

FIGURE II. RESPONSE OF FIRST STORY WITHOUT DAMPING IN 
HORIZONTAL DIRECTION IN 3 SECONDS. 

The response range of the first story in the horizontal 
direction in the first 3 seconds is shown in Figure 2. In the 
first 3 seconds that is the region before divergent response, 
the variations of the upper and lower bounds of the dynamic 
response are small. That is to say, the presented method has a 
good robustness with respect to interval parameters. Figure 3 
describes the response range of the first story in the 
horizontal direction in the first 10 seconds. It can be found 
that the dynamic responses of the undamped structure are 
divergent due to interval parameters. This divergent 
phenomenon is caused by the free vibration of the structure. 
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FIGURE III. RESPONSE OF FIRST STORY WITHOUT DAMPING IN 
HORIZONTAL DIRECTION IN 10 SECONDS. 

Consider the same structure shown in Figure 1. The 
damping matrix is assumed to be ሾࡵ࡯ሿ ൌ 0.01 ൈ ሾࡵࡷሿ ൅ 1 ൈሾࡵࡹሿ . The displacement response of the first story in the 
horizontal direction is shown in Figure 4. 

 

FIGURE IV. RESPONSE OF FIRST STORY WITH DAMPING IN 
HORIZONTAL DIRECTION IN 10 SECONDS. 

In Figure 4, the vertical axis is the displacement of the 
first story of the structure in the horizontal direction and the 
horizontal axis is the time from 0 to 13 seconds. It can be 
observed that the dynamic responses of the structure are 
convergent under damping. This is different from the 
undamped system. The reason of this phenomenon is that the 
responses of damping system are controlled by the external 
force. Comparing the variations of the upper and lower 
bounds, the presented method holds the high computing 
accuracy in interval calculation. 

V. CONCLUSION 
A new interval method has been presented to determine 

the range of vibration responses of structures with interval 
parameters. The effectiveness of the proposed method has 
been demonstrated by a numerical example of a three-story 
structure. The results have shown that the range between 
upper and lower bonds of dynamic responses due to 
uncertain system parameters is narrow and acceptable. Since 
the presented method neglects the higher order terms in the 
expansion of functions, the application of the approach is 
limited to the cases where the uncertainties of the interval 
parameters are small (<10%). 

 

REFERENCES 
[1] Au, S. K. (2004), “Reliability-based design sensitivity by efficient 

simulation”. Computers and Structures.83 1048-1061. 
[2] Alefeld, G. and Herzberger, J. (1983), Introduction to Interval 

Computations, York: Academic Press). 
[3] Chen, S. H., Lian, H. D. and Yang, X. W. (2002), “Dynamic response 

analysis for structures with interval parameters”.StructEngMech, 133 
299–312. 

[4] Chen, S. H. and Wu, J. (2004), “Interval optimization of dynamic 
response for structures with interval parameters”, Computer and 
Structures,82 1-11. 

[5] Chen, S. H. and Zhang, X. M. (2006), “Dynamic response of closed-
loop system with uncertain parameters using interval finite element 
method”, Journal of Engineering Mechanics,132(8), pp. 830-840. 

[6] Hansen, E. (1992), Global Optimization Using Interval Analysis, 
(New York: Marcel Dekker). 

[7] Meirovotch, L. (1980), Computational Methods in Structural 
Dynamics, (Sijthoff&Noordhoff). 

[8] Moore, R. E. (1966), Interval Analysis, (New York: Prentice-Hall, 
Englewood Cliffs). 

[9] Qiu, Z. P. and Wang, X. J. (2003), “Comparison of dynamic response 
of structures with uncertain-but-bounded parameters using non-
probabilistic interval analysis method and probabilistic approach”, 
International Journal of Solids and Structures,40 5423-5439. 

[10] Qiu, Z. P. and Wang, X. J. (2005), “Parameter perturbation method 
for dynamic responses of structures with uncertain-but-bounded 
parameters based on interval analysis”, International Journal of Solids 
and Structures, 42 4958-4970. 

[11] Weaver, Jr. W. and Johnston, P. R. (1987) Structural Dynamics by 
Finite Elements, (New Jersey: Prentice-Hall Inc.). 

813




