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Abstract--By using the generalized Riccati transformation and 
the inequality technique, we established one new oscillation 
criterion for the second-order nonlinear delay dynamic 
equations on time scales. Our results not only extend and 
improve some known theorems, but also unify the oscillation of 
the second-order nonlinear delay differential equation and the 
second-order nonlinear delay difference equation on time 
scales. 
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I. INTRODUCTION 
The theory of time scales, which has recently received a 

lot of attention, was introduced by Hilger [1], in order to 
unify continuous and discrete analysis. Several authors have 
expounded on various aspects of this new theory, see [2]. A 
time scale T  is an arbitrary closed subset of the reals and 
the cases when this time scale is equal to the reals or to the 
integers represent the classical theories of differential and of 
difference equations. In recent years, there has been much 
research activity concerning the oscillation and 
nonoscillation of solutions of various equations on time 
scales, and we refer the reader to [3-10]. In this paper we 
deal with the oscillatory behavior of all solutions of 
nonlinear second-order delay dynamic equation 

0( ( ) ( )) ) ( ) ( ( ( ))) 0, ,a t x t q t f x t t t tγ τΔ Δ + = ∈ ≥T .              (1) 

In this paper, we give the following hypotheses:  

(H1) T  is a time scale (i.e., a nonempty closed subset of 
the real numbers R ) which is unbounded above, and 0t ∈T  

with 0 0t > . We define the time scale interval of the form 
0[ , )t ∞ T by 0 0[ , ) [ , )t t∞ = ∞ IT T . 

(H2) 1γ ≥  is the ratio of two positive odd integers. 

(H3) , :a q  are positive real-valued rd-continuous 
functions on an arbitrary time scale T , and 

    0

1

1( )
( )t

t
a t

γ∞

Δ < ∞∫
.                                                  (2) 

(H4) :τ →T T  is a strictly increasing and differentiable 
function such that 

( ) , lim ( ) ,and ( )
t

t t tτ τ τ
→∞

≤ = ∞ ⊂T T
. 

(H5) :f →R R  is a continuous function such that satisfies 
for some positive constant L , 

( )
r

f x L
x

≥
 for all 0x ≠ . 

This article is the continuation of [9]. In this paper, 
suppose that the condition 

0

1

1( )
( )t

t
a t

γ∞

Δ = ∞∫
 

is invalid, we continue to discuss the oscillation of 
solutions of (1).  By using the generalized Riccati 
transformation and the inequality technique, we obtain one 
new oscillation criteria for (1).  

By a solution of (1), we mean a nontrivial real-valued 
function x satisfying (1) for t∈T . We recall that a solution 

x of (1) is said to be oscillatory on 0[ , )t ∞ T  in case it is 
neither eventually positive nor eventually negative; 
otherwise, the solution is said to be nonoscillatory. Equation 
(1) is said to be oscillatory in case all of its solutions are 
oscillatory. Our attention is restricted on those solutions x  
of (1) which x  is not the eventually identically zero. 

On the time scale T  we define the forward and the 
backward jump operators by 

{ }( ) inf :t s T s tσ = ∈ >   and   { }( ) sup :t s T s tρ = ∈ < . 

A point t∈T is said to be left-dense if ( )t tρ = , right-
dense if ( )t tσ = , left-scattered if ( )t tρ < and right-scattered 
if ( )t tσ > . The graininess μ  of the time scale is defined 

by ( ) ( )t t tμ σ= − . For a function :f →T R , if f  is 
continuous at t  and t  is right-scattered, the (delta) 
derivative is defined by 

( ( )) ( )( )
( )

f t f tf t
t t

σ
σ

Δ −
=

− . 

If t  is right-dense, then the derivative is defined by  
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( ) ( )( ) lim
s t

f t f sf t
t s+

Δ

→

−
=

−  
provided this limit exists. We will make use of the 

following product and quotient rules for the derivative of the 

product fg  and the quotient 
f

g   of   two differentiable 

functions f  and g :  

( ) ( ) ( ) ( ) ( ( )) ( ) ( ) ( ) ( ) ( ( )),fg t f t g t f t g t f t g t f t g tσ σΔ Δ Δ Δ Δ= + = +  (3) 
( ) ( ) ( ) ( )( ) ( )

( ) ( ( ))
f f t g t f t g tt
g g t g tσ

Δ Δ
Δ −

=
    if  0.g gσ⋅ ≠           (4) 

For ,b c∈T  and a differentiable function f , the 

Cauchy integral of f Δ
 is defined by  

( ) ( ) ( ).
c

b

f t t f c f bΔ Δ = −∫
 

The integration by parts formula reads  

  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

c c

b b

f t g t t f c g c f b g b f t g t tσΔ ΔΔ = − − Δ∫ ∫
                 (5) 

For more details, see [2].  

II. SEVERAL LEMMAS 
Lemma 1 [10, Lemma 2.2] Assume that :τ →T R   is 

strictly increasing and ( )τ ⊂T T  is a time scale 
and ( (t)) ( (t))τ σ σ τ= . Let :x →T R . If (t)τ Δ

, and let ( ( ))x tτΔ
 

exist for t∈T , then ( ( ( )))x tτ Δ
  exist, and 

       ( ( ( ))) ( ( )) ( ).x t x t tτ τ τΔ Δ Δ=                                        (6) 

Lemma 2 [2, Theorem 1.90] Assume that ( )x t  is delta-
differentiable and eventually positive or eventually negative, 
then 

     

1
1

0

(( ( )) ) [ ( ( )) (1 ) (t)] ( ) .x t hx t h x x t dhγ γγ σΔ − Δ= + −∫
                        (7) 

Lemma 3[11, Theorem 41] Assume that X and Y  are 
nonnegative real numbers, then 

        
1 ( 1) , 1,XY X Yλ λ λλ λ λ− − ≤ − >                            (8) 

where the equality holds if and only if  X Y= . 

III. MAIN RESULTS 
Theorem 1 Assume (H1)-(H5), (2) hold and 

1
0([ , ) , )rdC tτ ∈ ∞ T T , ( ( ))tτ σ =  

( ( ))tσ τ . Let { }0 0: ( , ) : , , [ , )H D t s t s t t s t= ≥ ≥ ∈ ∞ →T T R be 
a rd-continuous function, which is such that  

( ), 0H t t =  for ( )0 , , 0t t H t s≥ > for 0 0, , [ , )t s t t s t> ≥ ∈ ∞ T . 

And H  has a non-positive continuous Δ -partial 

derivative ( ),sH t sΔ

  with respect to the second variable, if 
there exists a positive Δ -differentiable function 

1
0([ , ) , ),rd TC tδ ∈ ∞ R such that 

0

1

1
0

( ( ))( ( ))1lim sup ( , )[ ( )q( ) ] s ,
( , ) ( 1) ( ( ) ( ))

t

t
t

a s sH t s s s
H t t s s

L
γ

γ γ

τ δδ
γ δ τ

Δ +
+

+ Δ→∞
− Δ = ∞

+∫               (9) 

where ( ) { } 1( ) max 0, ( ) , [ , )t t t tδ δΔ Δ

+
= ∈ ∞ T . If for every  

1 0[ , )t t∈ ∞ T  

( ) ( ) ( )
1 1

1

1 ,
s

t t

u q u u s
a s

γ
γθ

∞ ⎡ ⎤
Δ Δ = ∞⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫

              (10) 

where
( ) ( )

1

1 ,
t

t s
a s

γ

θ
∞ ⎛ ⎞

= Δ⎜ ⎟⎜ ⎟
⎝ ⎠
∫  then equation (1) is oscillatory on 

0[ , ) .t ∞ T  

Proof Suppose to the contrary that ( )x t   is a 
nonoscillatory solutions of equation (1) on 0[ , ) .t ∞ T we may 
assume without loss of generality that ( ) 0x t >   and ( )( ) 0x tτ >  
for all 0[ , )t t∈ ∞ T , 1 0[ , )t t∈ ∞ T We shall consider only this case, 
since the proof when x  is eventually negative is similar. By 

equation (1), we have ( ) ( )( )( ) 0a t x t
γ Δ

Δ <  . Since  ( ) ( )( )a t x t
γΔ

 is 
decreasing, it is eventually of one sign and hence ( )x tΔ

 is 
eventually of one sign. Thus, we shall distinguish the 
following two cases: 

(I) ( ) 0x tΔ >   for 1t t≥ ; and 

(II)  ( ) 0x tΔ <  for 1t t≥ . 

Case (I) The proof that ( )x tΔ

 is an eventually positive is 
similar to that of the proof of Theorem 4.1 in [9] and it 
hence is omitted. 

Case (II) For 1s t t≥ ≥ , we have 

( ) ( )( ) ( ) ( )( )a s x s a t x t
γ γΔ Δ− ≥ −  

and hence 

                         
( ) ( )

( ) ( )( )
1

.
a t

x s x t
a s

γ
Δ Δ⎛ ⎞

− ≥ −⎜ ⎟⎜ ⎟
⎝ ⎠                               (11) 

Integrating (11) from 1t t≥  to u t≥   and letting u →∞  
yields 

( ) ( ) ( )( ) ( )( ) ( ) ( )
1

11

t

x t s a t x t t x t
a s

γ
γ θ

∞
Δ Δ

⎡ ⎤
⎛ ⎞⎢ ⎥≥ Δ − = −⎜ ⎟⎜ ⎟⎢ ⎥
⎝ ⎠⎢ ⎥⎣ ⎦
∫

 

for 1[ , )t t∈ ∞ T , and thus 

( )( ) ( )( ) ( ) ( )( )r
x t t a t x t

γγ
θ Δ≥ −  

                         ( )( ) ( ) ( )( ) ( )( )1 1t a t x t b t
γγ γ

θ θΔ≥ − =                         (12) 

for 1[ , )t t∈ ∞ T ,  with  ( ) ( )( )1 1 0.
r

b a t x tΔ= − >  Using (12) in 
equation (1), 
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we find 

( ) ( )( )( ) ( ) ( )( )( )a t x t Lq t x t
γγ

τ
Δ

Δ− ≥  

                     ( ) ( )( ) ( )( ) ( )Lq t x t bL t q t
γ γ

θ≥ =                              (13) 

for 1[ , )t t∈ ∞ T .  Integrating (13) from  1t   to t  we have 

( ) ( )( ) ( ) ( )( ) ( )( ) ( )
1

1 1

t

t

a t x t a t x t bL s q s s
γ γ γ

θΔ Δ− ≥ − + Δ∫  

( )( ) ( )
1

t

t

bL s q s s
γ

θ≥ Δ∫  
such  that 

                         
( ) ( ) ( )( ) ( )

1

1

.
t

r

t

bLx t s q s s
a t

γ

θΔ
⎡ ⎤

− ≥ Δ⎢ ⎥
⎢ ⎥⎣ ⎦

∫                              (14) 

Integrating (14) from 1t to t , we obtain 

( ) ( ) ( ) ( ) ( ) ( )
1 1

1

1 1

t s

t t

bLx t x t x t u q u u s
a s

γ
γθ

⎡ ⎤
∞ > ≥ − + ≥ Δ Δ →∞⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫  

as t →∞ . By (10), we get a contradiction. This completes 
the proof. 

Remark 2 From Theorem1, we can obtain different 
conditions for oscillation of all solutions of (1) with 

different choices of ( )tδ  and ( ),H t s . For example, 

( ) ( ), mH t s t s= −  or  
( ) 1, ln .

1

mtH t s
s
+⎛ ⎞= ⎜ ⎟+⎝ ⎠  

Now, let us consider the function ( ),H t s  defined by 
( ) ( ), mH t s t s= − , 0 01, , , [ , )m t s t t s t≥ ≥ ≥ ∈ ∞ T , 

Then ( ), 0H t t =  for 0t t≥ , and ( ), 0H t s > , ( ), 0,H t sΔ ≤   for 
0t s t> ≥ ,  0, [ , )t s t∈ ∞ T . Hence we have the following results. 

Corollary 3 Assume (H1)-(H5), (2) , (10)  hold and 
1

0([ , ) , )rdC tτ ∈ ∞ T T , ( ( )) ( ( ))t tτ σ σ τ= . If there exists a positive 
Δ -differentiable function ( )1

0[ , ) ,rdC tδ ∈ ∞ T R   and 1m ≥  
such that 

0

1

1

( ( ))( ( ))1lim sup ( ) ( )q( ) s ,
( 1) ( ( ) ( ))

t
m

mt
t

a s st s L s s
t s s

γ

γ γ

τ δδ
γ δ τ

Δ +
+

+ Δ→∞

⎡ ⎤
− − Δ = ∞⎢ ⎥+⎣ ⎦

∫  
(15) 

for 0t s t> ≥  , 0, [ , )t s t∈ ∞ T , then equation (1) is oscillatory 
on  0[ , )t ∞ T .  

Remark 4 In the past, the usual result is that the 
conditions (2) was established, then every solution of the 
equation (1) is either oscillatory or converges to zero. But 
now Theorems 1 in our paper proved that if the condition (2) 
is satisfied, every solution of the equation (1) is oscillatory. 
Theorem1 in this paper are new even in the cases T== R and 
T==Z . 

Example 5 Consider the second-order nonlinear delay 2-
difference equation 

                    
10 5 5

43 3 3
0[ ( ( )) ] ( ( )) (1 ( )) 0, 2 , 2.

2 2
Zt tt x t t x x t t tΔ Δ+ + = ∈ ≥ =

                        (16) 

Here  
10 5

4 23 3 5( ) , ( ) , ( ) (1 ), ( ) , .
2 3
ta t t q t t f x x x tτ γ= = = + = =  

The conditions (H1)-(H4) are clearly satisfied, (H5) 
holds with 1L = . Next, for  2t ≥  so that 

0

1
10 3

23 5

2 2

1( ) ( ) 1
( )t

t t t t t
a t

γ∞ ∞ ∞
− −Δ = Δ = Δ = < ∞∫ ∫ ∫ as t →∞ . 

Hence (2) is satisfied. Now let ( ) ( ) ( )2, ,H t s t s t tδ= − = , for 
all 2t s> ≥ , then 

0

1

1
0

( ( ))( ( ))1lim sup ( ,s)[ ( )q( ) ]
( , ) ( 1) ( ( ) ( ))

t

t
t

a s sH t L s s s
H t t s s

γ

γ γ

τ δδ
γ δ τ

Δ +
+

+ Δ→∞
− Δ

+∫  
11 8 5

7 6 2 5 23 3 3
2

2

1lim sup ( 2 2 ) ,
( 2)

t

t
s ts t s bs bts bt s s

t→∞
= − + − + − Δ = ∞

− ∫  

where
5 8
3 31 8( ) ( )

2 3
b

−
=

, hence (9) is satisfied. Because of  
1

21 2 2( ) ( ) | ,
(s)

y

t
t t

t s s s
a s t

θ
∞ ∞

− ∞= Δ = Δ = − =∫ ∫  
and thus 

1

4 4 2 2 2 2 2 2

2

2 2 2 2( ) ( ) (s ) (s 2 )(s 2 ) s ,
15 15 15

s

t

u q u u u u s
u

θ
∞

Δ = Δ = − = + − ≥∫ ∫  
then 

1 1 1 1

1 3 3 3 4
2 25 5 5 51 2 2[ ( ) ( ) ] ( ) ( ) ( ) .

( ) 15 15

s

t t t t

uqu u s s s s s s
as

γθ
∞ ∞ ∞

−−Δ Δ ≥ Δ = Δ =∞∫ ∫ ∫ ∫
 

So (10) is satisfied as well. Altogether, by Theorem1, the 
equation (16) is oscillatory.  
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