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Abstract--In this paper, a higher-order macroscopic model is 
applied to simulate non-equilibrium pedestrian flow. The path 
choice behavior is described by a time dependent Hamilton 
Jacobi equation based on the assumption that pedestrian flow 
always tends to walk along a path with lowest actual walking 
cost. A self-adaptive method of successive averages coupled 
with a cell-centered finite volume method is used to solve the 
macroscopic model. A numerical example is designed to 
investigate macroscopic features and route choice behavior of 
pedestrian flow walking in a channel scattered with an 
obstruction. 
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I. INTRODUCTION 
In recent decades, pedestrian traffic has attracted 

attention of numerous scholars [1–5]. Many typical 
dynamical phenomena in pedestrian dynamics, such as 
clustering at bottlenecks, stripe formation and chevron effect, 
etc [1], can be perfectly captured by physical methods. 
These studies can help to develop guidelines for planning 
and designing pedestrian facilities for public transport 
planners as well as infrastructure designers.  

Many microscopic models, such as the social force 
model [2], cellular automata model [3], the lattice gas model 
[4], have been presented to investigate the collective 
phenomena in pedestrian traffic. Macroscopic models treat a 
large group of pedestrians as a flowing continuum and are 
generally described as a system of partial differential 
equations (PDEs) [5]. These models are useful for 
measuring macroscopic variables of pedestrian density, 
speed, and flow. For equilibrium traffic flow, there are two 
traffic assignment patterns, namely user equilibrium (UE) 
and system optimum (SO) [6-8]. The UE models encompass 
predictive UE models [9], in which pedestrians have 
predictive information when they are making a path-choice 
decision, and reactive dynamic user equilibrium models 
[7,10], in which pedestrians have to rely on the 
instantaneous information available to them and make their 
choices.     

In this paper, a higher-order macroscopic model is 
developed to illustrate non-equilibrium pedestrian flow. It is 
assumed that pedestrian flow always tends to choose a path 

from the current position and time to the destination with 
lowest actual walking cost, which is corresponding to the 
predictive UE pattern. This path choice behavior is 
described by a time dependent Hamilton Jacobi (HJ) 
equation. The model is solved by a cell-centered finite 
volume (FV) method and a self-adaptive method of 
successive averages (MSA). A numerical experiment is 
carried out to investigate macroscopic features and route 
choice behavior of pedestrian flow walking in a channel 
with an obstacle. 

II. MATHEMATICAL MODEL 
Consider a large group of pedestrians walking in a 2D 

continuous domain Ω . The boundary of Ω  consists of 

inflow boundary i
Γ , outflow boundary o

Γ , and solid wall 

boundary w
Γ . The density and average velocity of pedestrian 

flow are represented by ( , , )x y tρ  (in ped/m2) and 
( , , ) ( ( , , ), ( , , ))x y t u x y t v x y t=v  (in m/s), respectively. Let 

1 2
( , , ) ( ( , , ), ( , , ))x y t e x y t e x y t=e  be the desired direction of 

motion of pedestrian flow. [0, ]
end

T t=  (in s) is the modeling 
period.  

Based on continuum dynamics, the governing equations 
of non-equilibrium pedestrian flow in Ω  can be described 
as Euler equations with relaxation [11]:  
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which is subject to the initial conditions:   

     ( ) ( ) ( ) ( )
0 0

, , 0 , , , , 0 ,x y x y x y x yρ ρ= =v v .                   (2) 

In Eqs. (1), 0.5sτ =  is the characteristic relaxation time, 
( )c ρ  is the propagating speed of small perturbation in 

pedestrian flow which is equivalent traffic sonic speed, and 
2 ( )c

ρ
ρ

ρ

∇

 is called the anticipation term which reflects 

pedestrian reaction to the surrounding pedestrians. ( )
e

U ρ  
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describes an equilibrium state of the speed-density 

relationship and  

( )
e

U ρ

τ

−e v

 is called the relaxation term 
which represents a relaxation to the equilibrium. By 

different definitions of ( )c ρ , ( )eU ρ , and ( , , )x y te , we can 
obtain  different macroscopic dynamic models for non-
equilibrium pedestrian flow.  

We define traffic pressure ( )P ρ  as a function of the 
pedestrian density, which describes the response of 
pedestrians to compression and is expressed by  

2( )
( )

dP
c

d

ρ
ρ

ρ
=

 (3) 

The conservation form of Eqs. (1) is written as  
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Let ( , , )C x y t  be the local travel cost distribution and is 
defined by  

1
( , , )

( ( , , )
e

C x y t
U x y tρ

=

. 
(5) 

It is presumed that pedestrians have predictive 
information about traffic conditions over time and the 
desired direction of pedestrian movement is always to 
minimize the actual travel cost from the current position and 
time to the destination, thus resulting in a predictive UE 
pattern for the dynamic system [6,9].  

Let ( , , )x y tΦ  (in s) be cost potential which describes the 
lowest cost incurred by a pedestrian walking from the origin 
( , )x y ∈Ω  at time t to the destination o

Γ  at which 
( , , ) 0x y tΦ = . For the predictive UE pattern, the optimum 

motion trajectory can be uniquely determined as [9]:  
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Here, Φ  satisfies a time dependent HJ equation:  

(|| || )
e

U C
t
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(7) 

Assuming that all pedestrians have left the modeling 

domain and that there is no traffic at end
t t= , the traffic state 

is considered to be static and the travel cost to the 
destination is the instantaneous cost, i.e.  

0
( , , ) ( , )

end
x y t x yΦ = Φ . Here, 0

( , )x yΦ  satisfies an Eikonal 
equation: 
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(8)

III. NUMERICAL METHOD 
From Section 2, the higher-order macroscopic model of 

non-equilibrium pedestrian flow can be written in two parts. 
The one part is conservation laws (4) which satisfy the 
initial conditions (2). The another part is the time dependent 
HJ equation (7) which is subject to the initial and boundary 

conditions 0
( , , ) ( , ), ( , )

end
x y t x y x yΦ = Φ ∀ ∈Ω and 

( , , ) 0, ( , )
o

x y t x yΦ ∀ ∈ Γ= . The difficulty about the 
numerical computation of the model is the initial condition 

of the HJ equation (7) is obtained at endt t= , as opposed to 
that of Eqs. (4) at t=0. To solve this problem, we use a first 
order cell-centered FV scheme to solve Eqs. (4) and (7) , the 
fast sweeping method to solve Eq. (8), and the self-adaptive 
MSA [9] to solve the discrete fixed-point problem.  

The treatment of source terms in Eqs. (4) involves a 
fractional step method, by which each time step tΔ  is split 
into three steps. Eqs. (4) are split into the ordinary 
differential equations (ODEs) and the PDEs,  i.e.  

dQ
S

dt
= ,   ( , ) 0

Q
F G

t

∂
+ ∇ ⋅ =

∂
. 

The solution values of 
1nQ +

 at the n+1-th time step are 

obtained from 
nQ  at the n-th time step as follows. Firstly, 

we update 
nQ  with 

nQ%  by applying a classical implicit Euler 
method to the ODEs with the time increment / 2tΔ . 

Secondly, we update 
nQ%  with 

nQ  by applying the Lax-
Friedrichs scheme to the PDEs with the time increment tΔ . 
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Finally, we update 
nQ  with

1nQ +

 by applying the implicit 
Euler method to the ODEs with the time increment / 2tΔ . 

The first order cell-centered FV scheme for Eqs. (4) is 
written as  

1

1 1 1 1

2 2 2 2

ˆ ˆˆ ˆn n
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Δ Δ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 
(9) 

where ,x yΔ Δ are the mesh sizes in the x- and y-direction, 

respectively.  
1 1

2 2

ˆˆ ,
i j ij

F Q
+ +

are the Lax-Friedrichs numerical 
fluxes in the x- and y-direction, respectively, and are 
expressed by   

1 1 1 1 1 1

2 2

1 1ˆˆ ( ( ) ( ) ( )), ( ( ) ( ) ( )),
2 2

n n n n n n n n

ij i j x i j ij ij ij y ij ij
i j ij

F F Q F Q Q Q Q G Q G Q G Gα α
+ + + +

+ +

= + − − = + − −

wh

ere 
max(| | )x u cα = +

 and 
max(| | )y v cα = +

. 

We define (|| || )
e

H U C= ∇Φ −  and thus the first order 
cell-centered FV scheme for Eq. (7 ) is given by  

1 ˆ [( ) , ( ) , ( ) , ( ) ]n n

ij ij x ij x ij y ij y ijtH+ − + − +Φ = Φ − Δ Φ Φ Φ Φ
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is the Lax-Friedrichs numerical flux 
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where
1 2

max ( , ), max ( , )H H

x y
A u B A u B

C v D C v D

H u v H u vα α
≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

= =

. 

Here,
1 2

,
x y

H H
H H

∂ ∂
= =
∂Φ ∂Φ , [A,B] is the value range of u

±
 and 

[C,D] is the value range of v±

. 

Note that Eqs. (9) and (10) cannot be solved together as 
they have different initial times. Therefore, the discrete 
model is a fixed-point problem that can be solved by the 
MSA. See [9] for the description of MSA in detail. 

IV. NUMERICAL EXPERIMENTS AND RESULTS 
We consider a large group of pedestrians walking in a 

channel of size 100m×50m scattered with a square 
obstruction of size 20m×20m centered at (50m,20m). The 
entrance and exit with width of 50m and 30m are set at the 

left boundary iΓ  and the right boundary oΓ  of the channel, 

respectively. The study horizon T is set to 240s. The speed-

density relationship ( )
e

U ρ  is given by  

( ) ( )2exp
e f

U vρ γρ= − , (11)

with the free flow speed 1.034
f

v m s=  and the model 
parameter 0.075γ = . The critical density dividing the 
uncongested and congested density regions 
is

max
2 2.58

c
ρ ρ γ= ≈ ped/m2. The traffic pressure ( )P ρ  is 

defined as ( ) 2

0P cρ ρ=  with an anticipation 

coefficient 0 0c ≥ .  

The initial and boundary conditions for the macroscopic 

model are described as follows. Initially, 0 0ρ =  ped/m2 and 

0 =v 0m/s. At entrance i
Γ , a free and equilibrium inflow is 

given by 
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At the solid walls wΓ , the free-slip and non-permeable 

boundary conditions are applied with 
0, 0.

ρ∂
= =

∂
v n

n
�

On 

the outflow boundary oΓ , 
0, .fv

ρ∂
= =

∂
v n

n
�

  

Figure. 1 plots the density distribution of pedestrian flow 
walking in the domain scattered with an obstruction in the 
four phases with the parameter c0=2.0. In the first phase, 
pedestrian flow is divided into two sub-streams by the 
obstruction and a triangular vacuum region is formed on the 
left-hand side of the obstruction, which is consistent with the 
route choice strategy of pedestrians. In the second phase, the 
triangular vacuum region has narrowed dramatically with 
the increase of pedestrians near the obstruction. In the third 
phase, the density of pedestrian flow increases steadily 
around the obstruction and almost reaches a peak value. 
Two high density regions (i.e. two shocks) which represent 
traffic congestion are seen near the two left-hand corners of 
the obstruction because of the shortened width of the 
channel. The previous triangular vacuum region has 
disappeared and another triangular vacuum region is formed 
on the right-hand side of the obstruction. In the fourth phase, 
pedestrian flow has passed the obstruction and meanwhile 
gathered near the exit.  

Figure. 2 depicts the density distributions for the 
dissipation of pedestrian flow in four phases with the 
parameter c0=0.25. The first and second phases (see Figure. 
2 (a) and (b)) demonstrate almost the same results as in the 
corresponding sub-figures of Fig. 1. In the third phase, the 
areas of the high density regions are much bigger than those 
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observed in Figure. 1 (c), which indicates more serious 
traffic congestion appears. The production mechanism of 
more serious traffic jam is that the lower sonic speed at 
which the large disturbance caused by the obstruction 
spreads across the domain. The two shocks with the lower 
sonic speed are stronger than those with the faster one. In 
the fourth phase, high density regions are also observed near 
the two corners of the exit. 

  

(a) 30s                           (b) 60s 

  

    (c) 120s                         (d) 180s 

FIGURE I. FIGURE I: DENSITY PLOT AT DIFFERENT TIMES WITH 
C0=2. 

  

(a) 30s                 (b) 60s 

 

 (c) 120s                  (d) 180s 

FIGURE II. DENSITY PLOT AT DIFFERENT TIMES WITH C0=0.25. 

Table 1 shows the peak values of the density at different 
times, with c0=4.0, 1.0, and 0.125, respectively. It is 
observed that pedestrians are discharged more smoothly 
with the increase of the anticipation coefficient c0. Fig. 3 
shows the densities of pedestrian flow along x=37m and 
y=33m, which further illustrates the densities become 

smoother with large c0. Furthermore, the strong response of 
pedestrians to compression can prevent traffic congestion 
and collision accidents from occurring effectively. 

TABLEI. THE MAXIMUM DENSITIES WITH DIFFERENT VALUES OF C0. 

 

    

 (a) x=37m                           (b) y=33m 

FIGURE III. DENSITIES ALONG X = 37M AND Y = 33M WITH 
DIFFERENT VALUES OF C0 AT TIME T=120S. 

V. SUMMARY 
In this work, a higher-order pedestrian flow model 

composed of Euler equations with relaxation and a time 
dependent HJ equation is presented. Numerical results show 
that this model can reproduce some macroscopic features of 
pedestrian flow, such as the spatio-temporal distribution of 
density. Large anticipation coefficient or high traffic 
pressure could prevent from traffic congestion. 

ACKNOWLEDGEMENTS 
This work was supported by the Research Foundation of 

SWUST (No. 10zx7137) and NSFC grants (No. 11202175 
and No. 11372294). 

REFERENCES 
[1] J. Cividini, H.J. Hilhorst, C. Appert-Rolland: Journal of Physics A 

Vol. 46 (2013) , p. 345002 
[2] D. Helbing, I. Farkas, T. Vicsek: Nature Vol. 407 (2000), p. 487 

[3] A. Kirchner, A. Schadschneider: Journal of Physics A Vol. 312(2002), 
p. 260 

[4] W. Song, X. Xu, B.H. Wang, S. Ni. Journal of Physics A, 492 (2006), 
p. 363  

[5] R.L. Hughes: Transportation Research Part B 36 (2002), p. 507 

[6] Y.Q. Jiang, S.C. Wong, H.W. Ho, P. Zhang, R.X. Liu and A. Sumalee: 
Transportation Research Part B Vol. 45(2011), p. 343 

[7] Y.Q. Jiang,  T. Xiong,  S.C. Wong,  C.W. Shu,  M.P. Zhang,  P. 
Zhang,  W.H.K. Lam: Acta Mathematica Sinica Vol. 29B(2009), p. 
1541 

[8] Y.Z. Tao,  Y.Q. Jiang,   J. Du,   S.C. Wong,   P. Zhang,  Y.H. Xia and 
K. Choi: Journal of Advanced Transportation (2013), in press. 

[9] J. Du, S.C. Wong, C.W. Shu, T.  Xiong, M.P. Zhang, K. Choi: 
Transportation Research Part B Vol. 56(2013), p. 96 

[10] L. Huang, S.C. Wong, M.P. Zhang, C.W. Shu and W.H.K. Lam: 
Transportation Research Part B Vol. 43(2009), p. 127  

[11] Y.Q. Jiang, P. Zhang, S.C. Wong and R.X. Liu: Journal of Physics A 
389(2010), p. 4623 

t 30s 60s 120s 180s 

c0=4.0 0.916 1.957 2.881 2.345 

c0=1.0 0.973 2.372 4.087 2.845 

c0=0.125 0.983 2.732 5.328 3.724 

834




