
Bandwidth-based Application-Aware Multipath

Routing for NoCs

X.T. Ding

Institute of Artificial Intelligence and Robotics

Xi’an Jiaotong University

Shaanxi, China

State Key Laboratory of Mathematical Engineering and

Advanced Computing

Wuxi, China

C.X. Yang, X.W. Ren, P.J. Ren

Institute of Artificial Intelligence and Robotics

Xi’an Jiaotong University

Shaanxi, China

Abstract--Most of routing algorithms for On-chip communication
are neither application-aware nor routing packets using multiple

paths. In addition, they hardly consider link bandwidth variation

resulting from widely applied global asynchronous local

synchronous (GALS) mechanism. In this paper, we propose a

bandwidth-based application-aware multipath routing (BAMR)
algorithm to assign multiple routing paths by leveraging the

knowledge of application and network bandwidth features. With

the increase of number of flows resulting from the split of flows,

we present a new method named dynamic-amount fixed-number

(DAFN) flow control mechanism to avoid deadlock. We compare
our algorithm with XY, YX, and O1TURN with synthetic traffic

patterns and traffic trace of parallel implementation of H.264.

Experiments demonstrate that BAMR achieves higher

throughput with decrease in latency. Furthermore, the proposed

algorithm achieves better workload balance by distributing

traffic over multiple paths.

Keywords-on-chip network; GALS; multiple routing

I. INTRODUCTION

The growth of deep sub-micron technology will emerge
many challenges for next generation System-on-Chip (SoC)

design. The tile-based Network-on-chip (NoC) has been
proposed as a promising solution to the communication

challenges [1]. Each module is attached with a local router
which connects itself to its neighbours via a network, and

modules can exchange messages through the on-chip network.

In order to increase routing efficiency, some problems have
to be taken into consideration for a NoC. First, although NoCs

are expected to be identical in the design phase, cores and links
will have different frequencies and bandwidth, which will

cause some unpredictable drawbacks and challenges [2].
According to the study in [3], an 80-core Intel chip has 28%

variation between the fastest cores frequency, which results in

that homogeneous design became heterogeneous. Inevitably,
some designs for homogeneous are not suitable for NoC when

on-die variation is taken into consideration. NoC approach
offers a matchless platform for implementing the GALS

paradigm [4]. Second, once a link’s workload has achieved its
capacity, more flows sharing this link will cause congestion

and further degrade network performance. Some flows will

transmit packets in very low throughput and the associated
buffers will always be full. Even worse, congestion might

propagate to the upstream, and leading to tremendous

performance degradation. Furthermore, network has to
guarantee deadlock freedom. Deadlock is catastrophic to a

network, because a few resources are occupied by deadlocked
packets and other packets block on these resources will

paralyze the network operation.

To address the aforementioned three challenges, we

propose a bandwidth-based application-aware multipath

routing (BAMR) algorithm. Our algorithm is flexible to
different kinds of NoC topologies and traffic patterns. We first

decide routing order of flows based on application graph and
the bandwidth requirement. Then, considering the transmission

capacity of network links, we split some flows into multiple
subflows to alleviate network congestion. Our algorithm can

detect communication bottlenecks and make split based on
link’s residual bandwidth. For multipath routing, more flows

may increase the possibility of deadlock. To this end, we

propose a buffer management mechanism called dynamic-
amount fixed-number (DAFN), the number of Virtual Channels

(VCs) for each individual router port and VC depth are
predetermined at design phase based on the BAMR’s results.

Specifically, the number of VCs for a specified port at a
specified router is depending on the number of flows passing

through it. DAFN allocates each VC at a router with an

identical global label with assigned flow’s label. DAFN
achieves deadlock freedom by restricting each flow to its

exclusive VC, it takes full advantage of buffer space and avoids
deadlock without additional hardware resources.

Our work makes following contributions: We propose a
multipath routing algorithm named BAMR for GALS NoC. A

flow splitting method aiming at to alleviate network congestion

is presented, as part of BAMR.A static VC regulator named
DAFN, with the combination of BAMR to make the full

utilization of VC resources and avoid deadlock is also proposed.

The remaining part of this paper is organized as follows.

Section 2 shows related works and the motivation of our study.
In section3, we present some definitions used in our algorithm.

Section 4 describes our proposed algorithm. Section 5

evaluates BAMR performance and compares it with other
previous algorithms. Section 6 concludes our work.

II. RELATED WORK

Routing algorithms have been extensively studied.

Dimension-order routing (DOR) [5] is the most commonly

International Conference on Computer Information Systems and Industrial Applications (CISIA 2015)

© 2015. The authors - Published by Atlantis Press 29

used routing algorithm due to its simplicity. DOR routes
packets in one dimension, then moves to the next dimension,

until the final destination is reached. In a 2-D mesh, DOR
becomes XY (or YX) routing, which sends packets along the X

(or Y)-dimension first, followed by the Y(or X)-dimension. A

more flexible and sophisticated routing algorithm is adaptive
routing whose routes options are selected depend on the state of

network. Turn-model based routing [6] is a classic adaptive
routing. It increases the flexibility of the algorithm by allowing

six out of eight turns. Only one turn from each cycle is
eliminated. In [7], the author presents a novel selection strategy

called NoP that can be coupled with any adaptive routing. This

algorithm is based on the concept of Neighbors-on-Path,
aiming at explo iting the situations of indecision occurring when

routing function returns several admissible output channels.
Adaptive routing can potentially provide better throughput and

fault tolerance by allowing alternative paths, depending on the
network congestion and runtime faults. However, adaptive

routing increases the complexity of the router implementation.

Deflective routing in [8] routes packets to one of the free
output channels in minimal path. A bandwidth-aware routing

for diastolic arrays and avoiding deadlock by assuming that
each flow has its own private channel has been exp lored by

Cho [9]. An adaptive multipath routing algorithm proposed in
[10] selects minimal paths to send packets. In order to maintain

high throughput and low latency, reducing network congestion

with migrating some workload from busy links to idle links is
an effective solution. In [11], Krimer makes a packet-level

static timing analysis to advise optimization decision. When
multiple flows share a same link, and the overall bandwidth

requirement is beyond link’s capacity.

Previous single path routing algorithms introduced in

section 2 are not able to improve throughput when a flow’s
bandwidth demand is higher than the single link’s capacity.

Multipath routing algorithm named AXYX in [10] only sends

packets in two minimal paths. Figure 1 demonstrates XY, YX,
O1TURN, AXYX, and our proposed BAMR algorithm, and the

underlying network is a GALS based 2D-mesh network. Links’
bandwidth ranges from 3 to 5. Assuming message A is sent

from node S to D, and the bandwidth requirement is 9. As
shown in Figure 1a, link SA and AB are the bandwidth

bottlenecks of XY routing path, where the bandwidth capacity

is 4. Ideally, route from S to D without congestion can only
acquire bandwidth at 4 at most. Similarly, when applying YX

routing, the bottleneck bandwidth is 3. O1TURN chooses YX
or XY routing with the same probability. So, the transmission

bandwidth is 3.5 in average. Packets routed to destination by
AXYX are routing in XY and YX at the same time. However,

AXYX can achieve better bandwidth with the sum of XY and

YX routing, which is 7 in this case. Previous routing algorithms
only use links in the rectangles formed by node S and D. Once

some links’ bandwidth is fulfilled, continually sending packets
to those overstressed links will lead to congestion. On the

contrary, links out of the rectangle might are underutilized. Our
proposed BAMR is inspired by making full use of link’s

available bandwidth and is not limited to minimal routing.
BAMR is shown in Figure 1b, flow is split into two subflows

and transmit at the same time, one in minimal path and the

other in non-minimal path. By adopting our BAMR algorithm,

the transmission bandwidth is 9 at most. Our proposed
algorithm can route packets according to their bandwidth

demands. We note that non-minimal paths have more hop
count, but they may achieve h igher throughput and lower

latency if packets in this path will not contend with other flows.

Our proposed algorithm avoids contending link resource
between different flows as much as possible, which can reduce

arbitration time and save buffer space. As can be expected,
BAMR can achieve better workload balance by distributing

traffic more evenly.

D

S A B

3 4 4 5

3

5

3

4

4
5 4

5

4 5 3 5

5 4 4 5

3 5 5 3

5

4

3

5

5

5

5

5

3

5

5

5

4

4

3

5

 XY Routing
 YX Routing

O1TURN

D

S

3 4 4 5

3

5

3

4

4
5

4 5

4 5 3 5

5 4 4 5

3 5 5 3

5

4

3

5

5

5

5

5

3

5

5

5

4

4

3

5

 AXYX
 BAMR

(a) DOR and O1TURN routing (b) Multipah routing

FIGURE I. FIVE KINDS OF ROUTING ALGORITHMS

III. PROBLEM FORMULATION

In this section, we first present some definitions used in our

proposed routing algorithm, and then we state the optimization
goals of routing algorithm.

Definition1: An Application Communication Graph (ACG)
G(T, E) is a directed graph, where each vertex 𝑡𝑖 represents a

task and each directed edge(𝑡_𝑖, 𝑡_𝑗), denoted as 𝑒_(𝑖, 𝑗) ∈ E,

represents the communication between task 𝑡𝑖 and 𝑡𝑗 .Each edge

is tagged with a weight 𝑣(𝑒_(𝑖, 𝑗)) representing the

communication bandwidth demand from 𝑡𝑖 to 𝑡𝑗 , and a

communication task is represented by c(𝑡_𝑖, 𝑡_𝑗, v(𝑒_(𝑖, 𝑗))) A

set C contains all of the communication tasks of a given

application.

Definition2: A NoC Topology Graph (NTG) M(P,L) is a

directed graph. Each vertex 𝑝𝑖 ∈ P represents a processor with

a local router. Each directed arc between 𝑝𝑖 and 𝑝𝑗 represents

the link that 𝑝𝑖 can send packets to its adjacent processor𝑝𝑗

through their attached router, denoted as 𝑙 𝑖,𝑗 ∈ 𝐿 . We tag 𝑙 𝑖,𝑗
with a weight𝑏(𝑙 𝑖,𝑗), which represents link’s capacity. Link set

L contains all the links 𝑙 𝑖,𝑗 .

Definition3: A mapping set S is a set whose element s:t→
p(t∈T,p∈P) represents a mapping function, which indicates

that task t is executed on processor p.
Definition4: A flow set F contains all of the communication

flows for a given application after mapping,

𝑓(𝑡_𝑖, 𝑡_𝑗, 𝑣(𝑒(𝑖, 𝑗))) is corresponding to 𝑐(𝑡_𝑖, 𝑡_𝑗, 𝑣(𝑒(𝑖, 𝑗)))

in communication tasks set C.

Definition5: A routing solution set R is a set of paths, a

path connects 𝑝𝑖 to 𝑝𝑗 is represents as (𝑝𝑖 , … 𝑝𝑛 , … 𝑝𝑗), with the

consumed bandwidth is consume_bw.

Therefore, the problem can be described as: Given an

application graph G(T,E), a NoC topology graph M(P,L), and a
mapping set S; Find a routing solution set R; Such that

30

achieving higher throughput, lower latency, and better load
balance.

TABLE I. BANDWIDTH-BASED APPLICATION-AWARE MULTIPATH
ROUTING (BAMR)

Input: G(T,E),M(P,L) and S

Result: Routes decisions for all the communication tasks
1 initialization;
2 𝑫𝒍 is empty ; /* Set contains temporally removed links */

3 Generate traffic flow set F according to G(T,E),M(P,L) and S
4 Get a new flow set F ́by sorting F in descending order according to

flow’s weight 𝒗 𝒆𝒊,𝒋

5 while len(F ́) > 0 do
6 𝒇𝒎𝒂𝒙 = 𝒎𝒂𝒙(𝑭 ́) ; /* 𝒇𝒎𝒂𝒙 = (𝒑𝒊 , 𝒑𝒋 , 𝒗(𝒆𝒊,𝒋)) */

7 for link 𝒍𝒊,𝒋 in M(P,L) do

8 if b(𝒍𝒊,𝒋) < 𝒗(𝒆𝒊,𝒋) then

9 get M ́(P,L) by deleting 𝒍𝒊,𝒋 from M(P,L)

10 add 𝒍𝒊,𝒋 to 𝑫𝒍

11 if 𝒇𝒎𝒂𝒙 is routable in M ́(P,L) then
12 find route_path for 𝒇𝒎𝒂𝒙 by Dijkstra algorithm

13 remove 𝒇𝒎𝒂𝒙 from F
14 else

15 split 𝒇𝒎𝒂𝒙 into two subflows 𝒇𝟏 and 𝒇𝟐
16 𝒇𝟏 ,consume bw,route path=

17 split_flow(𝑫𝒍 , 𝒇𝒎𝒂𝒙 ,𝑴 ́(𝑷,𝑳)) ; /* invoke alg 2 */

18 𝒇𝟐 = (𝒑𝒊 , 𝒑𝒋 , 𝒗(𝒆𝒊,𝒋) – 𝒄𝒐𝒏𝒔𝒖𝒎𝒆_𝒃𝒘)

19 remove 𝒇𝒎𝒂𝒙 and insert 𝒇𝟐 into F
20 add route_path to 𝑹𝒔

21 consume_bw = min(route_path.links)
22 for link 𝒍𝒊,𝒋 in route path do

23 if consume_bw = b(𝒍𝒊,𝒋) then

24 delete 𝒍𝒊,𝒋 from M(P,L)

25 else
26 𝒃(𝒍𝒊,𝒋) = (𝒃(𝒍𝒊,𝒋) − 𝒄𝒐𝒏𝒔𝒖𝒎𝒆_𝒃𝒘)

27 Make XY routing for no_available_bw flows and add it to R
28 return R

We state that application mapping has to be accomplished
before making the routes decision. As is known, mapping

problem is a quadratic assignment problem which is NP−hard
[12]. The search space increases factorially with the system

size. In order to simplify our algorithm, we assume that task 𝑡𝑖
is executed on processor 𝑝𝑖 as fixed.

IV. METHODOLOGY

A. Bandwidth-based Application-Aware Routing Algorithm

(BAMR)

In this section, we present our BAMR algorithm. The main
idea of BAMR is splitting flows, whose bandwidth requirement

cannot be satisfied in a single path into multip le subflows to
transmit simultaneously to achieve the bandwidth demand. We

describe our proposed routing algorithm by an example.
Pseudo-code of BAMR is presented in algorithm 1. Application

graph G(T,E) and NoC topology M(P,L) are showed in Figure

2(a) and 2(b). As we have discussed in section 3, we focus on
routing algorithm rather than application mapping, so we

assume the mapping procedure has already finished, and take 𝑡𝑖
is executed at

𝑝𝑖 . The routing algorithm takes G (T,E), M(P,L) and the

mapping set S as inputs.

TABLE II. SPLIT UNROUTABLE FLOW INTO ROUTABLE SUBFLOWS

1 split_flow(𝑫𝒍 , 𝒇𝒎𝒂𝒙 ,𝑴 ́(𝑷,𝑳))
2 BEGIN
3 while 𝒇𝒎𝒂𝒙 is unroutable do

4 𝒅𝒍𝒎𝒂𝒙 = 𝒎𝒂𝒙(𝒅𝒍)
5 add 𝒅𝒍𝒎𝒂𝒙 𝐭𝐨 𝑴 ́(𝑷,𝑳)
6 if 𝒇𝒎𝒂𝒙 is routable based M ́(P,L) then
7 find route_path for 𝒇𝒎𝒂𝒙 by Dijkstra algorithm

8 𝒄𝒐𝒏𝒔𝒖𝒎𝒆_𝒃𝒘 = 𝒃(𝒍𝒎𝒂𝒙)
9 𝒇𝟏 = (𝒑𝒊 , 𝒑𝒋, 𝒄𝒐𝒏𝒔𝒖𝒎𝒆_𝒃𝒘)

10 else
11 delete 𝒅𝒍𝒎𝒂𝒙 from dl

12 if len(dl) = 0 then
13 add 𝒇𝒎𝒂𝒙 to no_available_bw_flows

14 return 𝒇𝟏 , consume_bw, route_path
15 END

We firstly get flows set F according to G(T,E), M(P,L) and
S. We state that different methods of ordering flows to make

route will cause different routing solutions and performance. A
flow with less bandwidth requirement (lower weight) can be

satisfied more flexib ly than the one with more bandwidth

requirement (higher weight), so we sort flows in descending
order by communication demand. After getting the ordered

flow set F´from F , we assign routing path for each flow in F´

sequentially. In Figure 2(a), we first handle message

connecting 𝑡8 to 𝑡6 with bandwidth 13 (𝑐𝑚𝑎𝑥 = (𝑡8 , 𝑡6 ,13)),

which is from 𝑝8 to 𝑝6 with weight 13 in M(P,L) after mapping

(𝑓𝑚𝑎𝑥 = (𝑝8 , 𝑝6 ,13) accordingly). We find that routing

through a single path cannot satisfy the communication
bandwidth demand, so we decide to split it and use mult ipath to

make transmission. We split 𝑓𝑚𝑎𝑥 into two subflows 𝑓1 and 𝑓2 .

𝑓1 is routing with maximal bandwidth that NoC topology can

support, 𝑓2 is a new flow with the residual bandwidth. We will

then assign a qualified path for 𝑓1 , and then insert 𝑓2 into the

flow set F at an appropriate position as a new flow, and make
the routes decision afterward.

We secondly delete links whose weights (residual
bandwidth) are less than the bandwidth demand of (𝑝8 , 𝑝6 , 13).

In Figure 2(b), we delete links that b(𝑙 𝑖,𝑗) are less than 13. It is

obvious that all links will be deleted so that there is no path
satisfying communication from 𝑝8 to 𝑝6 . In order to achieve

𝑓(𝑝8 , 𝑝6 , 13), we use Algorithm 2 to split 𝑓(𝑝8 , 𝑝6 , 13) into

two subflows 𝑓1 and 𝑓2 .

In Algorithm 2, we add temporally removed links in set 𝐷𝑙

in descending order until 𝑝8 has at least one path to

communicate with 𝑝6 . We declare that communication

bandwidth of a path is decided by the minimal bandwidth of

links belonging to it. Once there is a routable path from 𝑝8 to

𝑝6 after adding deleted link 𝑙 𝑖,𝑗 with a weight 𝑏(𝑙 𝑖,𝑗). Therefore,

𝑓(𝑝8 , 𝑝6 , 13) can get the maximal bandwidth of 𝑏(𝑙 𝑖,𝑗) . In

Figure 2(c), can be routable when links with weight 9 are added,
and we can get a path 𝑝8 , 𝑝5 , 𝑝4 ,𝑝3 , 𝑝6 with bandwidth of 9

from 𝑝8 to 𝑝6 . Accordingly, 𝑓(𝑝8 , 𝑝6 , 13) is split into

𝑓1(𝑝8 , 𝑝6 , 9) and f2(𝑝8 , 𝑝6 , 4) , f1 is routed using path

𝑝8 , 𝑝5 , 𝑝4 , 𝑝3 ,𝑝6 , and then, we insert f2 as a new flow into

flow set F.

We thirdly find the minimal weighted path using Dijkstra

algorithm. We set link’s weight as 1/𝑏(𝑙 𝑖,𝑗) in init ial. Notice

that, links with higher residual bandwidth are more possible

31

selected than others with lower residual bandwidth. We find the
minimal weighted path from 𝑝8 to 𝑝6 with bandwidth 9, as is

highlighted with bold line in Figure 2(c). It is worth noting that

traffic pattern usually gives average bandwidth that flows
demand. However, according to [13], massages are often

transferred in burst-mode, which requires higher bandwidth

temporally, so link capacity with bandwidth slack is necessary.
Our Algorithm can add an additional weight to v(i,j) to satisfy

these situations.

t7 t3t0

t1

t2

t8

t6t4

t5

1

2

11

3

1

2

7
5

4

3

13

3

P0 P1 P2

P3 P4 P5

P6 P7 P8

7

7

9

7

8 8 8 9 9 8

10

9

10

9

8

7

10

7

10 8 9 8 7 9

(a) (b)

P0 P1 P2

P3 P4 P5

P6 P7 P8

9

9 9

10

9

10

9

10

10 9 9

P0 P1 P2

P3 P4 P5

P6 P7 P8

7

7

9

7

8 8 8 9 9 8

10 10

8

7

10

7

1 8 9 8 7

(c) (d)

FIGURE II. ROUTING FOR FLOW WITH MAXIMAL BANDWIDTH
DEMAND ((A) APPLICATION GRAPH (B) NOC TOPOLOGY GRAPH (C)

ROUTING WITH BANDWIDTH 9 (D) RESIDUAL BANDWIDTH)

After that, we update F, M(P,L) and S. In the procedure of

updating F, 𝑓𝑚𝑎𝑥 is deleted from F if bandwidth of 𝑓𝑚𝑎𝑥 can be

satisfied, otherwise, 𝑓𝑚𝑎𝑥 is divided as two subflows 𝑓1 and 𝑓2 ,

𝑓1 is routable and assigned a path, but 𝑓2 with the residual

bandwidth will be inserted in F and treated as a new flow. In

updating M(P,L), we update link’s weight b(𝑙 𝑖,𝑗) with its

residual bandwidth for links belonging to the route path. After

updating F and M(P,L), links 𝑙𝑝8,𝑝5 , 𝑙𝑝5,𝑝4 and 𝑙𝑝4,𝑝3 are

removed, because these links have no residual bandwidth, and

weight of 𝑙𝑝3,𝑝6 is updated as the residual bandwidth 1, as

shown in Figure 2(d). At last, routing path (𝑝8 , 𝑝5 , 𝑝4 , 𝑝3 , 𝑝6)

for 𝑓(𝑝8 , 𝑝6 ,9) is added to routing solution set R.

We find routing path for flows in the descending order of
communication bandwidth requirements. In another word,

flows with higher bandwidth demand are considered earlier.
However, links might be deleted in M(P,L) when their

bandwidth has been used up according to Algorithm 1.In this
situation, no matter how to design routing algorithm, other

preassigned flows which share link bandwidth with these
unassigned flows will be affected. So, we invoke XY routing

hereafter, because XY routing can provide the minimal hop

counts.

B. Dynamic-Amount Fixed-Number Virtual Channel (DAFN)

After splitting one flow into multiple subflows, the

probability of deadlock increases. We propose a novel method
to avoid deadlock which is suitable for multipath routing.

Firstly we demonstrate the algorithm is deadlock free. The
assumptions are as follows:

• Each flow can only get into one fixed VC with the same

global label;

VC Allocator

Input buffers

Credit In

Output 1

Crossbar Switch

Credit Out

Switch Allocator

Route
Computation

VC1

VC2

VC3

VC4

Input buffers

VC1

VC2

VC3

VC4

Output 5

flow3(bw=7)

flow8(bw=5)

flow10(bw=4)

flow1(bw=10)

flow9(bw=6)

VC Allocator

Input buffers

Credit In

Output 1

Crossbar Switch

Credit Out

Switch Allocator

Route
Computation

VC3

VC8

VC10

Output 5

flow3(bw=7)

flow8(bw=5)

flow10(bw=4)

Input buffers

VC1

VC9

flow1(bw=8)

flow9(bw=8)

(a) Fixed-length VC architecture. (b) DAFN VC architecture

FIGURE III. COMPARISON OF TWO ROUTER ARCHITECTURES

• Each VC can only store the flow with the same global

label.

Theorem 1: Flows control satisfying aforementioned
assumptions will be deadlock free.

Proof: First, we prove that any two flows are deadlock free

by contradiction. Assuming flow1 and flow2 generate deadlock,
packets belonging to flow1 and flow2 are holding onto a set of

network resources in a cyclic manner. However, flow1 and
flow2 are using the different VCs according to assumptions,

which creates contradiction. Therefore, flow1 and flow2 are
deadlock free. In a similar way, any flows will not produce a

cycle because every two flows can’t get into the same VC,

there is no circular resource dependencies among flows.

Based on the aforementioned theorem, we explore a novel

mechanism to allocate VC resources to avoid deadlock.
According to traditional static buffer management [14], as

shown in Figure 3a, every input port has multiple queues with
fixed-length. The dynamic buffer management named ViChaR

is introduced in [15]. We imp lement DAFN by modify ing

ViChaR to achieve more optimizat ion and better efficiency by
leverage the knowledge of application communication

requirements.

In Figure 3b, we present our DAFN mechanism. As pointed

by Nicopoulos [15], routers with fixed buffer structures will
either be underperformed or underutilized under certain traffic

conditions. We organize VC number by considering traffic
workload of every input port. In order to avoid head-of-line

blocking, we provide every flow with only one VC.

Necessarily, a VC can only be used by one flow and each flow
can only get into one VC (note that split subflows coming from

the same flow are regarded as two different flows). We label
every VC globally to guarantee flows not contend the same VC

with others, as shown on the left of Figure 3b. In the process of
transmission, packets belonging to a given flow can only get

32

into the specified VC with fixed label, which is identical to
flow number.

As shown in Figure 3b, flow8 can only get into VC8 in
every router along its path. In this means, flow will not require

other VCs so that arbitration is simple and fast without an

additional pipeline stage. Our organization can satisfy all the
conditions of theorem 1, so that deadlock-free is guaranteed.

The buffer size of VC is variable according to flows of input
ports. Considering making full use of the link bandwidth, we

allocate more buffer space to flows with higher bandwidth
demand. To ensure fairness, flows get buffer space is

proportional to their bandwidth demand. In Figure 3, we

assume amount buffer space of every input port is 16 flits.
According to various of flows’ required bandwidth, we allocate

VC3 to flow3 with 7 flits, VC8 to flow8 with 6 flits and VC10
to flow10 with 3 flits. Compared to fixed number and length

VC, our method makes fu ll utilization of buffer space.
Different to ViChaR with avoiding deadlock by escape VC and

dynamic allocate of both VCs and their associated buffer depth

with sophisticated mechanism, our method allocates VC and
buffer resources statically according to network traffic

conditions, and achieves deadlock free by fixed-label g lobally,
which can make fu ll use of buffer space.

V. EVALUATION

A. Simulation Configuration

For all the experiments, we use HORNET [16]. We

configure the total number of 32 flits buffer size for each port
and then simulate for 100,000 cycles to collect statistics. In

order to evaluate our algorithm, we measure the throughput of
the network under different in jection rates under a set of

synthetic traffic patterns, including TRANSPOSE, BIT-

COMPLEMENT, SHUFFLE and a mult imedia traffic trace of
parallel implementation of H.264. For synthetic benchmarks,

all flows with the same bandwidth demands. H.264 is derived
from a real application so that flows have different bandwidth

demands.

B. Throughput Analysis

Figure 4 shows throughput results for different synthetic
traffic patterns. As is shown, BAMR algorithm out-performs

O1TURN, XY and YX. In the case of SHUFFLE , the
improvement of saturation throughput is 71.4%, 51.3% and

51.3%. For TRANSPOSE, the improvement is 4.76%, 60.7%

and 60.7%. For BIT-COMPLEMENT, the improvement is
15%, 72.5% and 72.5%. Note, in the case of BIT-

COMPLEMENT, the result is very interesting. In Figure 4c,
We can see O1TURN, XY and YX have a obvious throughput

reduction when input injection rate is around 15 flits/cycle.
This performance degradation is because of Head-of-Line(HoL)

blocking. However, BAMR performs well without
performance reduction when injection rate around the

saturation. We note the reason is that flows in BIT-

COMPLEMENT have many source and destination positions
across the mesh, making it highly symmetric in the X and Y

direction. As a result, a lot of flows will share same links.
Flows congest in the share link and throughput degrade

immediately due to the HoL blocking in O1TURN, XY and
YX. Our algorithm assigns links according to links’ residual

bandwidth, so BAMR successfully escapes from the congested
link and keeps relatively high throughput around saturation

injection rate (15 flits/cycle). Figure 4d presents our algorithm
has improvement of 32.6%, 10.7% and 25.7% compared to

O1TURN, XY and YX. Our algorithm is attractive because it

makes full use of underutilized links and avoid contending
around shared links.

(a) SHUFFLE

(b) TRANSPOSE

(c) BIT COMPLEMENT

(d) H.264

FIGURE IV. THROUGHPUT OF FOUR ALGORITHMS IN DIFFERENT

TRAFFIC PATTERNS

33

(a) SHUFFLE

(b) TRANSPOSE

(c) BIT-COMPLEMENT

(d) H.264

FIGURE V. LATENCY OF FOUR ALGORITHMS IN DIFFERENT

TRAFFIC PATTERNS

C. Latency Analysis

Figure 5 presents latency results of various routing

algorithms. BAMR has better performance in SHUFFLE and

H.264 compared to other algorithms. The average latency
reduction is 9.7%, 12.4% and 15.3%, compared to O1TURN,

XY and YX. Similar to throughput trend, the performance of
latency for BIT-COMPLEMENT and TRANSPOSE are

medium. Because our algorithm may find longer paths for
routing, resulting in more hop counts flows can be routed to

their destinations.

D. Workload Analysis

Our algorithm not only achieves the highest throughput and

lower latency, but also better workload balance. Figure 6

shows spatial power distribution of different algorithms used

in H.264. As we can see BAMR leverages more underutilized

links and release hotspot. By migrat ing workload from heavy

links to idle links, our algorithm achieves better workload

balance. Power results are achieved by Orion2.0 [17] that is

integrated in HORNET.

(a) XY (b)YX

(c) O1TURN (d) BAMR

FIGURE VI. WORKLOAD DISTRIBUTION IN DIFFERENT

ALGORITHMS

VI. CONCLUSION

We have proposed an efficient algorithm to route packets,

based on the knowledge of property of communication, which
making full use of link’s bandwidth, so that network achieves

high throughput and low latency. We also explore a new
method by using dynamic amount and fixed number VC to

avoid deadlock and help improve routing performance,
especially for GALS NoC.

The primary feature of our algorithm is finding suitable
routing paths for packets according to application’s

characteristics and link bandwidth of NoC. We find routing

paths for flows in descending order according to bandwidth
requirement. We split some flows beyond link band-width into

multiple subflows to balance traffic of network. However, the
main limitation of the proposed method is that, our algorithm

has to address out-of-order problem resulting from multipath
routing, re-order buffers are needed at the receiver side,

because packets belonging to same flow might reach the

destination in an out-of-order fashion. The other limitation is
that our proposed algorithm is based on fixed mapping strategy,

which sacrifices some potentials and restricts routing flexibility.

ACKNOWLEDGEMENTS

This research is partially funded by NSFC grant
No.610303036 and the Open Project Program of the State Key

Laboratory of Mathematical Engineering and Advanced
Computing No.2014A09.

REFERENCES

[1] W. J. Dally and B. Towles, Route packets, not wires: On-chip
interconnect-ion networks. Design Automation Conference, IEEE, pp.
684–689, 2001.

[2] E. Humenay, D. Tarjan, and K. Skadron, Impact of process variations on
multicore performance symmetry. Proceedings of the conference on
Design, automation and test in Europe. EDA Consortium, pp. 1653–1658,
2007.

[3] S. Dighe, S. Vangal, P. Aseron, S. Kumar et al. Within-die variation-
aware dynamic-voltage-frequency scaling core mapping and thread
hopping for an 80-core processor. Solid-State Circuits Conference Digest
of Technical Papers (ISSCC), International.IEEE, pp. 174–175, 2010.

[4] U. Y. Ogras, R. Marculescu, P. Choudhary, andD.Marculescu, Voltage-
frequency island partitioning for gals-based networks-on-chip. Design
Automation Conference, 44th ACM/IEEE. IEEE, pp. 110–115, 2007.

[5] W. J. Dally and C. L. Seitz, Deadlock-free message routing in

34

multiprocessor interconnection networks. Computers, IEEE Transactions
on, 100(5), pp. 547–553, 1987.

[6] C. J. Glass and L. M. Ni, The turn model for adaptive routing. ACM
SIGARCH Computer Architecture News, 20(2). ACM, pp. 278–287,
1992.

[7] G. Ascia, V. Catania, M. Palesi, and D. Patti, Implementation and
analysis of a new selection strategy for adaptive routing in networks-
onchip. Computers. IEEE Transactions on, vol(6), pp. 809–820, 2008.

[8] E. Nilsson, M. Millberg, J. Oberg, and A. Jantsch, Load distribution with
the proximity congestion awareness in a network on chip. Design,
Automation and Test in Europe Conference and Exhibition, IEEE, pp.
1126–1127, 2003..

[9] M. H. Cho, C.-C. Cheng, M. Kinsy, G. E. Suh, and S. Devadas, Diastolic
arrays: throughput-driven reconfigurable computing. Computer-Aided
Design. ICCAD 2008. IEEE/ACM International Conference on. IEEE,
pp. 457–464, , 2008.

[10] M. Morvarid, M. Fathy, and R. Berangi, Adaptive multipath routing
algorithm for network on chips. Work-in-Progress Proceedings, p. 9,
2010.

[11] E. Krimer, M. Erez, I. Keslassy, A. Kolodny, and I. Walter, Packet-level
static timing analysis for nocs. Networks-on-Chip, 2009. NoCS 2009.
3rd ACM/IEEE International Symposium on. IEEE, pp. 88–88, 2009.

[12] M. R. Garey and D. S. Johnson, Computers and intractability. Freeman
San Francisco, 1979, vol. 174.

[13] I. Cohen, O. Rottenstreich, and I. Keslassy, Statistical approach to
networks-on-chip. Computers, IEEE Transactions on, 59(6), pp. 748–761,
2010.

[14] N. E. Jerger and L.-S. Peh, On-chip networks. Synthesis Lectures on
Computer Architecture, 4(1), pp. 1–141, 2009.

[15] C. A. Nicopoulos, D. Park, J. Kim, N. Vijaykrishnan, M. S. Yousif, and
C. R. Das, Vichar: A dynamic virtual channel regulator for network-on-
chip routers. Microarchitecture, 2006. MICRO-39. 39th Annual
IEEE/ACM International Symposium on. IEEE, pp. 333–346, 2006.

[16] P. Ren, M. Lis, M. H. Cho, K. S. Shim, C. W. Fletcher, O. Khan, N.
Zheng, and S. Devadas, Hornet: A cycle-level multicore simulator.
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 31, no. 6, pp. 890–903, 2012.

[17] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, Orion 2.0: A power-area
simulator for interconnection networks. Very Large Scale Integration
Systems, IEEE Transactions on, vol. 20, no. 1, pp. 191–196, 2012.

35

