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Abstract--Most of routing algorithms for On-chip communication 
are neither application-aware nor routing packets using multiple 

paths. In addition, they hardly consider link bandwidth variation 

resulting from widely applied global asynchronous local 

synchronous (GALS) mechanism. In this paper, we propose a 

bandwidth-based application-aware multipath routing (BAMR) 
algorithm to assign multiple routing paths by leveraging the 

knowledge of application and network bandwidth features. With 

the increase of number of flows resulting from the split of flows, 

we present a new method named dynamic-amount fixed-number 

(DAFN) flow control mechanism to avoid deadlock. We compare 
our algorithm with XY, YX, and O1TURN with synthetic traffic 

patterns and traffic trace of parallel implementation of H.264. 

Experiments demonstrate that BAMR achieves higher 

throughput with decrease in latency. Furthermore, the proposed 

algorithm achieves better workload balance by distributing 

traffic over multiple paths. 

Keywords-on-chip network; GALS; multiple routing 

I. INTRODUCTION 

The growth of deep sub-micron technology will emerge  
many challenges for next  generation System-on-Chip (SoC) 

design. The tile-based Network-on-chip (NoC) has been 
proposed as a promising solution to the communication 

challenges [1]. Each module is attached with a local router 
which connects itself to its neighbours via a network, and 

modules can exchange messages through the on-chip network. 

In order to increase routing efficiency, some problems have 
to be taken into consideration for a NoC. First, although NoCs 

are expected to be identical in the design phase, cores and links 
will have different frequencies and bandwidth, which will 

cause some unpredictable drawbacks and challenges [2]. 
According to the study in [3], an 80-core Intel chip has 28% 

variation between the fastest cores frequency, which results in 

that homogeneous design became heterogeneous. Inevitably, 
some designs for homogeneous are not suitable for NoC when 

on-die variation is taken into consideration. NoC approach 
offers a matchless platform for implementing the GALS 

paradigm [4]. Second, once a link’s workload has achieved its 
capacity, more flows sharing this link will cause congestion 

and further degrade network performance. Some flows will 

transmit packets in very low throughput and the associated 
buffers will always be full. Even worse, congestion might 

propagate to the upstream, and leading to tremendous 

performance degradation. Furthermore, network has to 
guarantee deadlock freedom. Deadlock is catastrophic to a 

network, because a few resources are occupied by deadlocked 
packets and other packets block on these resources will 

paralyze the network operation. 

To address the aforementioned three challenges, we  

propose a bandwidth-based application-aware multipath 

routing (BAMR) algorithm. Our algorithm is flexible to 
different kinds of NoC topologies and traffic patterns. We first 

decide routing order of flows based on application graph and 
the bandwidth requirement. Then, considering the transmission 

capacity of network links, we split  some flows into multiple  
subflows to alleviate network congestion. Our algorithm can 

detect communication bottlenecks and make split based on 
link’s residual bandwidth. For multipath routing, more flows 

may increase the possibility of deadlock. To this end, we  

propose a buffer management mechanism called dynamic-
amount fixed-number (DAFN), the number of Virtual Channels 

(VCs) for each individual router port and VC depth are 
predetermined at design phase based on the BAMR’s  results. 

Specifically, the number of VCs for a specified port at a 
specified router is depending on the number of flows  passing 

through it. DAFN allocates each VC at a router with an 

identical global label with assigned flow’s label. DAFN 
achieves deadlock freedom by restricting each flow to its 

exclusive VC, it takes full advantage of buffer space and avoids 
deadlock without additional hardware resources. 

Our work makes following contributions: We propose a 
multipath routing algorithm named BAMR for GALS NoC. A  

flow splitting method aiming at to alleviate network congestion 

is presented, as part of BAMR.A static VC regulator named 
DAFN, with the combination of BAMR to make the full 

utilization of VC resources and avoid deadlock is also proposed. 

The remaining part of this paper is organized as follows.  

Section 2 shows related works and the motivation of our study. 
In section3, we present some definitions used in our algorithm. 

Section 4 describes our proposed algorithm. Section 5 

evaluates BAMR performance and compares it with other 
previous algorithms. Section 6 concludes our work. 

II. RELATED WORK 

Routing algorithms have been extensively studied. 

Dimension-order routing (DOR) [5] is the most commonly  
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used routing algorithm due to its simplicity. DOR routes 
packets in one dimension, then moves to the next dimension, 

until the final destination is reached. In a 2-D mesh, DOR 
becomes XY (or YX) routing, which sends packets along the X 

(or Y)-dimension first, followed by the Y(or X)-dimension. A 

more flexible and sophisticated routing algorithm is adaptive 
routing whose routes options are selected depend on the state of 

network. Turn-model based routing [6] is a classic adaptive 
routing. It increases the flexibility of the algorithm by allowing 

six out of eight turns. Only one turn from each cycle is 
eliminated. In [7], the author presents a novel selection strategy 

called NoP that can be coupled with any adaptive routing. This 

algorithm is based on the concept of Neighbors-on-Path, 
aiming at explo iting the situations of indecision occurring when 

routing function returns several admissible output channels. 
Adaptive routing can potentially provide better throughput and 

fault tolerance by allowing alternative paths, depending on the 
network congestion and runtime faults. However, adaptive 

routing increases the complexity of the router implementation. 

Deflective routing in [8] routes packets to one of the free 
output channels in minimal path. A bandwidth-aware routing 

for diastolic arrays and avoiding deadlock by assuming that 
each flow has its own private channel has been exp lored by 

Cho [9]. An adaptive multipath routing algorithm proposed in 
[10] selects minimal paths to send packets. In order to maintain 

high throughput and low latency, reducing network congestion 

with migrating some workload from busy links to idle links is 
an effective solution. In [11], Krimer makes a packet-level 

static timing analysis to advise optimization decision. When 
multiple flows share a same link,  and the overall bandwidth 

requirement is beyond link’s capacity.  

Previous single path routing algorithms introduced in 

section 2 are not able to improve throughput when a flow’s  
bandwidth demand is higher than the single link’s capacity. 

Multipath routing algorithm named AXYX in [10] only sends 

packets in two minimal paths. Figure 1 demonstrates XY, YX, 
O1TURN, AXYX, and our proposed BAMR algorithm, and the 

underlying network is a GALS based 2D-mesh network. Links’ 
bandwidth ranges from 3 to 5. Assuming message A is sent 

from node S to D, and the bandwidth requirement is  9. As 
shown in Figure 1a, link SA and AB are the bandwidth 

bottlenecks of XY routing path, where the bandwidth capacity 

is 4. Ideally, route from S to D without congestion can only 
acquire bandwidth at 4 at most. Similarly, when applying YX 

routing, the bottleneck bandwidth is 3. O1TURN chooses YX 
or XY routing with the same probability. So, the transmission 

bandwidth is 3.5 in average. Packets routed to destination by 
AXYX are routing in XY and YX at the same time. However, 

AXYX can achieve better bandwidth with the sum of XY and 

YX routing, which is 7 in this case. Previous  routing algorithms 
only use links in the rectangles  formed by node S and D. Once 

some links’ bandwidth is fulfilled, continually sending packets 
to those overstressed links will lead to congestion. On the 

contrary, links out of the rectangle might are underutilized. Our 
proposed BAMR is inspired by making full use of link’s 

available bandwidth and is not limited to minimal routing. 
BAMR is shown in Figure 1b, flow is  split into two subflows 

and transmit at the same time, one in minimal path and the 

other in non-minimal path. By adopting our BAMR algorithm, 

the transmission bandwidth is 9 at most. Our proposed 
algorithm can route packets according to their bandwidth 

demands. We note that non-minimal paths have more hop 
count, but they may achieve h igher throughput and lower 

latency if packets in this path will not contend with other flows. 

Our proposed algorithm avoids contending link resource 
between different flows as much as possible, which can reduce 

arbitration time and save buffer space. As can be expected, 
BAMR can achieve better workload balance by distributing 

traffic more evenly. 
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(a) DOR and O1TURN routing       (b) Multipah routing 

FIGURE I. FIVE KINDS OF ROUTING ALGORITHMS 

III. PROBLEM FORMULATION 

In this section, we first present some definitions used in our 

proposed routing algorithm, and then we state the optimization 
goals of routing algorithm. 

Definition1: An Application Communication Graph (ACG) 
G(T, E) is a directed graph, where each vertex 𝑡𝑖  represents a 

task and each directed edge(𝑡_𝑖, 𝑡_𝑗 ), denoted as 𝑒_(𝑖, 𝑗) ∈ E, 

represents the communication between task 𝑡𝑖  and 𝑡𝑗 .Each edge 

is tagged with a weight 𝑣(𝑒_(𝑖, 𝑗) )  representing the 

communication bandwidth demand from 𝑡𝑖  to 𝑡𝑗 , and a 

communication task is represented by c(𝑡_𝑖, 𝑡_𝑗, v(𝑒_(𝑖, 𝑗) )) A 

set C contains all of the communication tasks of a given 

application. 

Definition2: A NoC Topology Graph (NTG) M(P,L) is a 

directed graph. Each vertex 𝑝𝑖 ∈ P  represents a processor with 

a local router. Each  directed arc between 𝑝𝑖 and 𝑝𝑗  represents 

the link that 𝑝𝑖  can send packets to its adjacent processor𝑝𝑗  

through their attached router, denoted as 𝑙 𝑖,𝑗 ∈ 𝐿 . We tag 𝑙 𝑖,𝑗  
with a weight𝑏(𝑙 𝑖,𝑗 ), which represents link’s capacity. Link set 

L contains all the links 𝑙 𝑖,𝑗 . 

Definition3: A mapping set S is a  set whose element s:t→
p(t∈T,p∈P) represents a mapping function, which indicates 

that task t is executed on processor p. 
Definition4: A flow set F  contains all of the communication  

flows for a given application after mapping, 

𝑓(𝑡_𝑖, 𝑡_𝑗, 𝑣(𝑒(𝑖, 𝑗)))  is corresponding to 𝑐(𝑡_𝑖, 𝑡_𝑗, 𝑣(𝑒(𝑖, 𝑗))) 

in communication tasks set C. 

Definition5: A routing solution set R is a set of paths, a 

path connects 𝑝𝑖  to 𝑝𝑗  is represents as (𝑝𝑖  , … 𝑝𝑛  , … 𝑝𝑗  ), with the 

consumed bandwidth is consume_bw. 

Therefore, the problem can be described as: Given an  

application graph G(T,E), a  NoC topology graph M(P,L), and a 
mapping set S; Find a  routing solution set R; Such that 
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achieving higher throughput, lower latency, and better load 
balance. 

TABLE I. BANDWIDTH-BASED APPLICATION-AWARE MULTIPATH 
ROUTING (BAMR) 

Input: G(T,E),M(P,L) and S 

Result: Routes decisions for all the communication tasks 
1 initialization; 
2 𝑫𝒍 is empty ; /* Set contains temporally removed links */ 

3 Generate traffic flow set F according to G(T,E),M(P,L) and S 
4 Get a new flow set F  ́by sorting F in descending order according to 

flow’s weight 𝒗 𝒆𝒊,𝒋  

5 while len(F  ́) > 0 do 
6     𝒇𝒎𝒂𝒙 =  𝒎𝒂𝒙(𝑭  ́)       ;     /* 𝒇𝒎𝒂𝒙  = (𝒑𝒊  , 𝒑𝒋 , 𝒗(𝒆𝒊,𝒋 ))  */ 

7     for link 𝒍𝒊,𝒋 in M(P,L) do 

8            if b(𝒍𝒊,𝒋) <  𝒗(𝒆𝒊,𝒋) then 

9               get M  ́(P,L) by deleting 𝒍𝒊,𝒋 from M(P,L) 

10             add 𝒍𝒊,𝒋 to 𝑫𝒍 

11    if 𝒇𝒎𝒂𝒙  is routable in M  ́(P,L) then 
12       find route_path for  𝒇𝒎𝒂𝒙  by Dijkstra algorithm 

13       remove  𝒇𝒎𝒂𝒙  from F 
14    else 

15       split 𝒇𝒎𝒂𝒙  into two subflows 𝒇𝟏  and 𝒇𝟐 
16         𝒇𝟏 ,consume bw,route path= 

17       split_flow(𝑫𝒍 , 𝒇𝒎𝒂𝒙  ,𝑴  ́(𝑷,𝑳))  ;        /* invoke alg 2 */ 

18       𝒇𝟐 =  (𝒑𝒊 , 𝒑𝒋 , 𝒗(𝒆𝒊,𝒋 ) –  𝒄𝒐𝒏𝒔𝒖𝒎𝒆_𝒃𝒘)  

19       remove 𝒇𝒎𝒂𝒙  and insert 𝒇𝟐 into F 
20    add route_path to 𝑹𝒔 

21     consume_bw = min(route_path.links) 
22    for link 𝒍𝒊,𝒋 in route path do 

23        if consume_bw = b(𝒍𝒊,𝒋 ) then 

24             delete 𝒍𝒊,𝒋  from M(P,L) 

25        else 
26             𝒃(𝒍𝒊,𝒋) =  (𝒃(𝒍𝒊,𝒋 ) −  𝒄𝒐𝒏𝒔𝒖𝒎𝒆_𝒃𝒘)  

27 Make XY routing for no_available_bw flows and add it  to R 
28 return R 

We state that application mapping has to be accomplished 
before making the routes decision. As is known, mapping  

problem is a quadratic assignment problem which is  NP−hard 
[12]. The search space increases factorially with the system 

size. In order to simplify our algorithm, we assume that task 𝑡𝑖  
is executed on processor 𝑝𝑖   as fixed. 

IV. METHODOLOGY 

A. Bandwidth-based Application-Aware Routing Algorithm 

(BAMR) 

In this section, we present our BAMR algorithm. The main  
idea of BAMR is splitting flows, whose bandwidth requirement 

cannot be satisfied in a single path into multip le subflows to 
transmit simultaneously to achieve the bandwidth demand. We 

describe our proposed routing algorithm by an example. 
Pseudo-code of BAMR is presented in algorithm 1.  Application 

graph G(T,E) and NoC topology M(P,L) are showed in Figure 

2(a) and 2(b). As we have discussed in section 3, we focus on 
routing algorithm rather than application mapping, so we 

assume the mapping procedure has already finished, and take 𝑡𝑖  
is executed at  

𝑝𝑖 . The routing algorithm takes G (T,E), M(P,L) and the 

mapping set S as inputs. 

 

 

TABLE II. SPLIT UNROUTABLE FLOW INTO ROUTABLE SUBFLOWS 

1 split_flow(𝑫𝒍 , 𝒇𝒎𝒂𝒙  ,𝑴  ́(𝑷,𝑳))  
2 BEGIN 
3 while 𝒇𝒎𝒂𝒙  is unroutable do 

4         𝒅𝒍𝒎𝒂𝒙  =  𝒎𝒂𝒙(𝒅𝒍) 
5       add 𝒅𝒍𝒎𝒂𝒙  𝐭𝐨 𝑴  ́(𝑷,𝑳) 
6       if 𝒇𝒎𝒂𝒙  is routable based M  ́(P,L) then 
7             find route_path for  𝒇𝒎𝒂𝒙  by Dijkstra algorithm 

8             𝒄𝒐𝒏𝒔𝒖𝒎𝒆_𝒃𝒘 =  𝒃(𝒍𝒎𝒂𝒙) 
9             𝒇𝟏  =  (𝒑𝒊 , 𝒑𝒋, 𝒄𝒐𝒏𝒔𝒖𝒎𝒆_𝒃𝒘) 

10     else 
11           delete 𝒅𝒍𝒎𝒂𝒙  from dl 

12      if len(dl) = 0 then 
13           add 𝒇𝒎𝒂𝒙  to no_available_bw_flows 

14 return 𝒇𝟏 , consume_bw, route_path 
15 END 

We firstly get flows set F according to G(T,E), M(P,L) and 
S. We state that different methods of ordering flows to make  

route will cause different routing solutions and performance. A  
flow with less bandwidth requirement (lower weight) can be 

satisfied more flexib ly than the one with more bandwidth  

requirement (higher weight), so we sort flows in  descending 
order by communication demand. After getting the ordered 

flow set F´from F , we assign routing path for each flow in F´ 

sequentially. In Figure 2(a), we first handle message 

connecting 𝑡8  to 𝑡6  with bandwidth 13 (𝑐𝑚𝑎𝑥  =  (𝑡8  , 𝑡6  ,13)), 

which is from 𝑝8  to 𝑝6  with weight 13 in M(P,L) after mapping 

( 𝑓𝑚𝑎𝑥 = (𝑝8  , 𝑝6  ,13)   accordingly). We find that routing 

through a single path cannot satisfy the communication 
bandwidth demand, so we decide to split it and use mult ipath to 

make transmission. We split 𝑓𝑚𝑎𝑥  into two subflows 𝑓1  and 𝑓2 . 

𝑓1  is routing with maximal bandwidth that NoC topology can 

support, 𝑓2  is a new flow with the residual bandwidth. We will 

then assign a qualified path for  𝑓1 , and then insert 𝑓2  into the 

flow set F at an appropriate position as a new flow, and make 
the routes decision afterward. 

We secondly delete links whose weights (residual 
bandwidth) are less than the bandwidth demand of (𝑝8 , 𝑝6 , 13). 

In Figure 2(b), we delete links that b(𝑙 𝑖,𝑗 ) are less than 13. It is  

obvious that all links will be deleted so that there is no path 
satisfying communication from 𝑝8  to 𝑝6 . In order to achieve 

𝑓(𝑝8 , 𝑝6 , 13), we use Algorithm 2 to split 𝑓(𝑝8 , 𝑝6 , 13) into  

two subflows 𝑓1  and 𝑓2 . 

In Algorithm 2, we add temporally removed links in set  𝐷𝑙  

in descending order until 𝑝8  has at least one path to 

communicate with  𝑝6 . We declare that communication 

bandwidth of a path is decided by the minimal bandwidth of 

links belonging to it. Once there is a routable path from  𝑝8  to 

𝑝6  after adding deleted link 𝑙 𝑖,𝑗  with a weight 𝑏(𝑙 𝑖,𝑗 ). Therefore, 

𝑓(𝑝8 , 𝑝6 , 13)  can get the maximal bandwidth of 𝑏(𝑙 𝑖,𝑗 ) . In  

Figure 2(c), can be routable when links with weight 9 are added, 
and we can get a path 𝑝8  , 𝑝5  , 𝑝4  ,𝑝3  , 𝑝6  with bandwidth of 9 

from 𝑝8  to 𝑝6 . Accordingly, 𝑓(𝑝8 , 𝑝6 , 13)  is split into  

𝑓1(𝑝8 , 𝑝6 , 9)  and f2( 𝑝8 , 𝑝6 , 4) , f1 is routed using path 

𝑝8 , 𝑝5  , 𝑝4  , 𝑝3  ,𝑝6  , and then, we insert f2 as a new flow into 

flow set F. 

We thirdly find the minimal weighted path using Dijkstra 

algorithm. We set link’s weight as 1/𝑏(𝑙 𝑖,𝑗 ) in init ial. Notice  

that, links with higher residual bandwidth are more possible 
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selected than others with lower residual bandwidth. We find the 
minimal weighted path from 𝑝8  to 𝑝6  with bandwidth 9, as is 

highlighted with bold line in Figure 2(c). It is worth noting that 

traffic pattern usually gives average bandwidth that  flows 
demand. However, according to [13], massages are often 

transferred in burst-mode, which requires higher bandwidth 

temporally, so link capacity with bandwidth slack is necessary. 
Our Algorithm can add an additional weight to  v(i,j) to satisfy 

these situations. 
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FIGURE II. ROUTING FOR FLOW WITH MAXIMAL BANDWIDTH 
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ROUTING WITH BANDWIDTH 9 (D) RESIDUAL BANDWIDTH) 

After that, we update F, M(P,L) and S. In the procedure of 

updating F, 𝑓𝑚𝑎𝑥  is deleted from F  if bandwidth of 𝑓𝑚𝑎𝑥  can be 

satisfied, otherwise, 𝑓𝑚𝑎𝑥  is divided as two subflows 𝑓1  and 𝑓2 , 

𝑓1  is routable and assigned a path, but 𝑓2  with the residual 

bandwidth will be inserted in F  and treated as a new flow. In  

updating M(P,L), we update link’s weight b( 𝑙 𝑖,𝑗 ) with its 

residual bandwidth for links belonging to the route path. After 

updating F and M(P,L), links  𝑙𝑝8,𝑝5 , 𝑙𝑝5,𝑝4  and 𝑙𝑝4,𝑝3  are 

removed, because these links  have no residual bandwidth, and 

weight of 𝑙𝑝3,𝑝6  is updated as the residual bandwidth 1, as 

shown in Figure 2(d). At last, routing path (𝑝8 , 𝑝5  , 𝑝4  , 𝑝3  , 𝑝6  ) 

for 𝑓(𝑝8  , 𝑝6  ,9) is added to routing solution set R. 

We find routing path for flows in the descending order of 
communication bandwidth requirements. In another word, 

flows with higher bandwidth demand are considered earlier. 
However, links might be deleted in M(P,L) when their 

bandwidth has been used up according to Algorithm 1.In this 
situation, no matter how to design routing algorithm, other 

preassigned flows which share link bandwidth with these 
unassigned flows will be affected. So, we invoke XY routing 

hereafter, because XY routing can provide the minimal hop 

counts. 

B. Dynamic-Amount Fixed-Number Virtual Channel (DAFN) 

After splitting one flow into multiple subflows, the 

probability of deadlock increases. We propose a novel method 
to avoid deadlock which is  suitable for multipath routing. 

Firstly we demonstrate the algorithm is deadlock free. The 
assumptions are as follows: 

• Each flow can only get into one fixed VC with the same  

global label; 
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(a) Fixed-length VC architecture. (b) DAFN VC architecture 

FIGURE III. COMPARISON OF TWO ROUTER ARCHITECTURES 

• Each VC can only store the flow with the same global  

label. 

Theorem 1: Flows control satisfying aforementioned 
assumptions will be deadlock free. 

Proof: First, we prove that any two flows are deadlock free 

by contradiction. Assuming flow1 and flow2 generate deadlock, 
packets belonging to flow1 and flow2 are holding onto a set of 

network resources in a cyclic manner. However,  flow1 and 
flow2 are using the different VCs according to assumptions, 

which creates contradiction. Therefore, flow1 and flow2 are 
deadlock free. In a similar way, any flows will not produce a 

cycle because every two flows can’t get into the same VC, 

there is no circular resource dependencies among flows. 

Based on the aforementioned theorem, we explore a novel 

mechanism to allocate VC resources to avoid deadlock. 
According to traditional static buffer management [14], as 

shown in Figure 3a, every input port has multiple queues with 
fixed-length. The dynamic buffer management named ViChaR 

is introduced in [15]. We imp lement DAFN by modify ing 

ViChaR to achieve more optimizat ion and better efficiency by 
leverage the knowledge of application communication 

requirements.  

In Figure 3b, we present our DAFN mechanism. As pointed 

by Nicopoulos [15], routers with fixed buffer structures will 
either be underperformed or underutilized under certain traffic  

conditions. We organize VC number by considering traffic  
workload of every input port. In order to avoid head-of-line 

blocking, we provide every flow with only one VC.  

Necessarily, a VC can only be used by one flow and each flow 
can only get into one VC (note that split subflows coming from 

the same flow are regarded as two different flows). We label 
every VC globally to guarantee flows not contend the same VC 

with others, as shown on the left of Figure 3b. In the process of 
transmission, packets belonging to a given flow can only get 
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into the specified VC with fixed label, which is  identical to 
flow number. 

As shown in Figure 3b, flow8 can only  get into VC8 in  
every router along its path. In this means, flow will not require 

other VCs so that arbitration is simple and fast without an 

additional pipeline stage. Our organization can satisfy all the 
conditions of theorem 1, so that deadlock-free is guaranteed. 

The buffer size of VC is variable according to flows of input 
ports. Considering making full use of the link bandwidth, we 

allocate more buffer space to flows with higher bandwidth 
demand. To ensure fairness, flows get buffer space is 

proportional to their bandwidth demand. In Figure 3, we 

assume amount buffer space of every input port is 16 flits. 
According to various of flows’ required bandwidth, we allocate 

VC3 to flow3 with 7 flits, VC8 to flow8 with 6 flits and VC10 
to flow10 with 3 flits. Compared to fixed number and length 

VC, our method makes fu ll utilization of buffer space. 
Different to ViChaR with avoiding deadlock by escape VC and 

dynamic allocate of both VCs and their associated buffer depth 

with sophisticated mechanism, our method allocates VC and 
buffer resources statically according to network traffic 

conditions, and achieves deadlock free by fixed-label g lobally, 
which can make fu ll use of buffer space.  

V. EVALUATION 

A. Simulation Configuration 

For all the experiments, we use HORNET [16]. We 

configure the total number of 32 flits buffer size for each port 
and then simulate for 100,000 cycles to collect statistics. In 

order to evaluate our algorithm, we measure the throughput of 
the network under different in jection rates under a set of 

synthetic traffic  patterns, including TRANSPOSE, BIT-

COMPLEMENT, SHUFFLE and a mult imedia traffic trace of 
parallel implementation of H.264. For synthetic benchmarks, 

all flows with the same bandwidth demands. H.264 is derived 
from a real application so that flows have different bandwidth 

demands. 

B. Throughput Analysis 

Figure 4 shows throughput results for different synthetic 
traffic patterns. As is shown, BAMR algorithm out-performs 

O1TURN, XY and YX. In the case of SHUFFLE , the 
improvement of saturation throughput is 71.4%, 51.3% and 

51.3%. For TRANSPOSE, the improvement is 4.76%, 60.7%  

and 60.7%. For BIT-COMPLEMENT, the improvement is 
15%, 72.5% and 72.5%. Note, in the case of BIT-

COMPLEMENT, the result is very interesting. In Figure 4c, 
We can see O1TURN, XY and YX have a obvious throughput 

reduction when input injection rate is around 15 flits/cycle. 
This performance degradation is because of Head-of-Line(HoL)  

blocking. However, BAMR performs well without 
performance reduction when injection rate around the 

saturation. We note the reason is that flows in BIT-

COMPLEMENT have many source and destination positions 
across the mesh, making it highly symmetric in the X and Y 

direction. As a result, a lot of flows will share same links. 
Flows congest in the share link and throughput degrade 

immediately  due to the HoL blocking in O1TURN, XY and  
YX. Our algorithm assigns links according to links’ residual 

bandwidth, so BAMR successfully escapes from the congested 
link and keeps relatively high throughput around saturation 

injection rate (15 flits/cycle). Figure 4d presents our algorithm 
has improvement of 32.6%, 10.7% and 25.7% compared to  

O1TURN, XY and YX. Our algorithm is attractive because it 

makes full use of underutilized links and avoid contending 
around shared links. 

 
(a) SHUFFLE 

 
(b) TRANSPOSE 

 
(c) BIT COMPLEMENT 

 
(d) H.264 

FIGURE IV. THROUGHPUT OF FOUR ALGORITHMS IN DIFFERENT 

TRAFFIC PATTERNS 
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(a) SHUFFLE 

 
(b) TRANSPOSE 

 
(c) BIT-COMPLEMENT 

 
(d) H.264 

FIGURE V. LATENCY OF FOUR ALGORITHMS IN DIFFERENT 

TRAFFIC PATTERNS 

C. Latency Analysis 

Figure 5 presents latency results of various routing 

algorithms. BAMR has better performance in SHUFFLE and 

H.264 compared to other algorithms. The average latency 
reduction is 9.7%, 12.4% and 15.3%, compared to O1TURN, 

XY and YX. Similar to throughput trend, the performance of 
latency for BIT-COMPLEMENT and TRANSPOSE are 

medium. Because our algorithm may find longer paths for 
routing, resulting in more hop counts flows can be routed to 

their destinations.  

D. Workload Analysis 

Our algorithm not only achieves the highest throughput  and 

lower latency, but also better workload balance. Figure 6 

shows spatial power distribution of different algorithms used 

in H.264. As we can see BAMR leverages more underutilized  

links and release hotspot. By migrat ing workload from heavy 

links to idle links, our algorithm achieves better workload  

balance. Power results are achieved by Orion2.0 [17] that is  

integrated in HORNET. 

  

(a) XY (b)YX 

  
(c) O1TURN (d) BAMR 

FIGURE VI. WORKLOAD DISTRIBUTION IN DIFFERENT 

ALGORITHMS 

VI. CONCLUSION 

We have proposed an efficient algorithm to route packets, 

based on the knowledge of property of communication, which  
making full use of link’s bandwidth, so that network achieves 

high throughput and low latency. We also explore a  new 
method by using dynamic amount and fixed number VC to 

avoid deadlock and help improve routing performance, 
especially for GALS NoC. 

The primary feature of our algorithm is finding suitable 
routing paths for packets according to application’s 

characteristics and link bandwidth of NoC. We find routing 

paths for flows in descending order according to bandwidth 
requirement. We split some flows beyond link band-width into 

multiple subflows to balance traffic  of network. However, the 
main limitation of the proposed method is that, our algorithm 

has to address out-of-order problem resulting from multipath 
routing, re-order buffers are needed at the receiver side, 

because packets belonging to same flow might reach the 

destination in an out-of-order fashion. The other limitation is 
that our proposed algorithm is based on fixed mapping strategy, 

which sacrifices some potentials  and restricts routing flexibility. 
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