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Abstract--A multi-restart iterated local search (MRSILS) 

algorithm is introduced for the Split Delivery Vehicle Routing 

Problem (SDVRP). The initial solution is generated by the 

GENIUS and applied the local search procedure by removing one 

node from its current route and inserting it into the best locations, 

with the possibility of splitting its demand. A node inserting 

algorithm is proposed for SDVRP, trying to find a better solution 

by an insertion with the consideration of splitting the demand. 

The perturbation is applied while certain predefined continuous 

no improvement local search steps are occurred. In order to 

extend the search space and keeping the quality of the restart 

solution, a method is designed for the perturbation that the 

perturbed solution is chosen from an elite solution set, while the 

best solution is preferred. The object of this work is to minimize 

the total travel distance. Experimental results on a benchmark 

set show that the MRSILS is competitive with a state of the art 

algorithm. 
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I. INTRODUCTION 

Vehicle Routing Problem with split delivery (SDVRP) is a 
variant of capacitated vehicle routing problem (CVRP). The 
demand of each node in SDVRP can be served by more than 
one vehicle. In SDVRP, there is a set of nodes N with service 
demand, infinite homogeneous vehicles V with capacity 
constraint k to provide service and one depot D. The vehicles 
start and end their tours at the depot withoutthe load 
surpassingkduring the tour and the demand of all the nodes 
must be satisfied[1]. 

Compared with other VRPs, SDVRP problem has not been 
enough concerned. There are still some excellent works 
published. Dror and Trudeau [1], [2]analyze the savings 
achieved by allowing deliveries split in some VRP instances 
and provide a heuristic algorithm for SDVRP. Nowak et al. [3] 
show the potential benefit of split loads and prove the most 
benefit occurring with delivery of node just one half of vehicle 
capacity. Drorand Trudeau [1] describe valid inequalities for 
the SDVRP and Archetti et al. [4]describe a tabu search 
algorithm for SDVRP. Chen et al. [5] and Archetti et al. [6] put 
forward hybrid heuristics for SDVRP combined with the 
advantages ofheuristic and optimization methods to improve 
calculation efficiency of the single algorithm. Derigset al.[7] 
present several local-search-based metaheuristics including 
simulated annealing (SA), threshold accepting (TA), record-to-
record travel (RRT), the attribute based hill climber heuristic 
(ABHC) and the attribute based local beam search heuristic 
(ABLBS) for the SDVRP, and the ABHC get the best 
experimental results. 

Boudia et al. [8] point out that the using of dynamic 
programming increases the running time by 30% without 
significant improvement than the one found by a greedy 
heuristic.In this work, we propose a greedy iterated local search 
(ILS) algorithm in which the insertion move in local search 
phase follows the simple principle that always do the best 
insertion, considering the possible splitting of the demand. In 
order to extend the search space effectively, without 
deteriorating the quality of the restart solution, a multi-restart 
perturbation method is designed, which is derived from the 
idea of Dong et al. [9]. 

The rest of this paper is organized as follows. In section 2, 
we present our multi-restart local search algorithm, including 
the method for the initial solution, local search structure and 
perturbation method. In section 3, the experimental resultsare 
reported and analyzed. In section 4, we put forward the 
innovation and deficiency point of our algorithm. 

II. MULTI-RESTART ITERATED LOCAL SEARCH ALGORITHM 

The followingtermsare used in this paper. The number of 
nodes is N. Direct trip is a tour in which a vehicle starts from 
the depot, goes directly to a customer, deliversk units and then 
turns back directly to the depot [4]. Remove savingof nodeiis 

denoted by RSi and computed by RSi=
 


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where R(i) is all the cars that visit node i in current solution; p 
and q are the predecessor and the successor of node i in route r; 
cpidenotes the distance between node p and i and so on. 
Remove saving listRSLis defined as a non-increasing list of RSi 
for all node i.The minimum cost for inserting node i into route 
r is denoted by ICir =min {csi + cit - cst}, where s and t are two 
adjacent nodes in route r. The minimum costs for inserting 
node i into all the routes in Rformingthe insert cost list of nodei, 
denoted by ICLi, and the elements in which are sorted in 
ascending way. 

There are two phases in local search. In phase 1, if the 
demands of some nodes are larger than k, then the nodes will 
be divided into two parts IKand IR. Part IKcontains the nodes 
with demand surpassing k, and the demand of the node i in IK is 

set tok⌊di/k⌋. Then nodes are created as IK' for the nodes in IK 
with non-zero remaining demand. Part IRis the remaining nodes 
by removing IK from I, i.e. IR = I\IK. Initial solution for IK is 
generated by adding direct trips for every node. We use 

GENIUS [10] for IR∪IK' to generate a big TSP tour, and then 

split the tour by k. The initial solution consists of the above two 
initial solutions. 
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In phase 2, we propose a multi-restart iterated local search 
for SDVRP. We do the local search by removing node iand 
then reinserting it into another position according to the method 
presented in section 2.1. The searching order of node i is 
arranged by RSL. This arrangement is based on the hypothesis 
that searching the node with larger remove saving can achieve 
a better solution with greater possibility. A qualified solution 
pool is also maintained to enlarge the restart-solution space. 
The pool is designed for the perturbation function, which is the 
solution chosen from the pool is perturbed to generate the start 
solution for the next local search. The algorithm is names 
MRSILS and the pseudo-code is shown in algorithm 1, where 
s0 is the initial solution; s' is the current solution; s* is the 
current best solution; s'' is the solution which is the result of 
local search starting from s'; the number of nodes is denoted by 
N; Sis the solution poolstoring a set of solutions; 
pool_sizerepresents the maximum size of S. 

Algorithm 1: Multi-restart local search frame 

1.  Generate s0, s' ← s0, s* ← s0, i, flag ← false, S← ϕ, 

pool_size; 

2.  while (termination criterion is not satisfied) do 

3.      Compute the RSL for s'; 

4. i← 0; 

5. while (i<N) do 

6. s'' = LocalSearch(s', i); 

7. ifs'' is better than s'then 

8. s'← s''; 

9. endif 
10.  if s' is better than

s*
 then 

11. s*
← s', flag←true; 

12. endif 
13. if the perturbation limitation is met then 

14. ifflag is true then 

15. S←ϕ, flag← false; 

16. endif 
17. S←accept(S, s'); 

18. s'←perturb(S, s
*
); 

19. endif 
20. i++; 

21. endwhile 

22. endwhile 
23. Stop and output s

*
. 

In step 17 of the algorithm 1, the accept(S, s') is used to 
estimate whether s' is qualified to be added to S: if the size of S 
is less than pool_size, add s'to S; otherwise if s' is better than 
the worst one in S, then remove the worst and insert s' into S. 
The solutions in Sare several good solutions around the current 
best solution s*, so choosing a solution from it to generate the 
restart solution is a reasonable option. The perturbation method 
in step 18 is shown in section 2.2. 

A. Insertion Method 

In the localsearch, we successively remove a node from the 
current solution and reinsert it to its best location. The insertion 
is designed as follows to support the possible split operations. 
As for the selection of the least cost move of node i, all the 
routes with surplus capacity larger than the demand of node i 
are checked, in addition to the combination of several routes 

with least insertion cost. The whole insertion procedure is 
shown as below. 

Step1: Remove node i from s' and compose route list RLi; 

Step 2: Compute the insertion cost ICir for route r in RLi, 
whose surplus capacity can satisfy the demand of node i, 
denote the route with minimumICir by rmin, and set minic to ICir; 
if it does not exist, setminicto a very large number; 

Step 3: Compute the minimum cost minisfor the case of the 
sum of the surplus capacity of the first z routes in RLi is larger 
than the demand of node i, while the first z– 1 routes can not 
satisfy the demand, where the routes considered above have 
most least insertion cost and the surplus capacity of each one is 
smaller than the demand of node i; if such case does not exist, 
the minis is a very large number; 

Step 4: Insert the node i to the case indicated by the smaller 
minis and minic; 

B. Perturbation Strategy 

The perturbed solution and the perturbation method have a 
great influence on the quality of the final best solution. There 
are two steps for the perturbation strategy. Firstly choose the 
solution which will be perturbed; secondly perturb the chosen 
solution. As for the first step, when the S is full, we choose one 
randomly from it; otherwise the current best solution s* is 
chosen. The perturbation method is shown as algorithm 2. 

Usually, perturbation is occurred when the local search is 
trapped in a local optimum, i.e. the current solution can not be 
improved by re-inserting any node. 

Algorithm 2: Perturbation strategy 

1. Choosing two routes r1 and r2from the solution being 

perturbed randomly; 

2. Generate start nodes Ai and Bifor these two routes 

randomly; 

3. Randomly generateCAthe numberof being perturbed 

nodes for r1; 

4. Mark CA nodes starting from Ai on path r1 as set NRA; 

5. Suppose the total demand of node set NR is denoted by dR,  

and the surplus capacity of route r is denoted by sr, then 

take the maximal number of nodes in r2 starting from Bi as 

NRB, satisfying sr1 + dRA - dRB> 0; 

6. If all of the nodes in NRA can be served by r2, the 

perturbation can be implemented by exchanging the NRA 

and NRBdirectly ; otherwise, exchange the NRA and NRB with 

the splitting of the last node in NRA . 
However, it can be assumed that the local search can hardly 

improve the solution further after checking certain number of 
nodes without improvement, and so make a perturbation to 
continue the local search is reasonable in such a case. We set 
the above number of insertion nodes as the criterion for the 
perturbation in step 13 in algorithm 1, which is denoted by L. 

III. EXPERIMENTAL RESULTS 

The problems 1-5 and 11 from Gendreauet al.[11] are 
considered in this work. The customer number of these 
instances is between 50 and 199. As proposed by Archetti et 
al.[4], the demand of the customers is changed by introducing 
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two parameters αand γ, where αand γin the interval [0, 1] and 
α≤γ. The demand di of customer i is set todi = αk + δ (γ – α) k, 
where δ is a randomly number in [0, 1]. The (α, γ) are set as 
follows: (0.1, 0.3), (0.1, 0.5), (0.1, 0.9), (0.3, 0.7), (0.7, 0.9). 
The instance set used in this work is provided warmheartedly 
by C. Archetti, and it is the same with what is used in Derigset 
al. [7]. We get the results with 1.3GHz CPU with 3GB memory 
and the algorithm is implemented in C++. 

In order to optimize the perturbation, the parameter L is set 

to ⌈0.01N⌉, ⌈0.1N⌉, ⌈0.5N⌉ and N, respectively. The MRSILS 
is run 5 independent times for each case with the five CPU 
minutes. The best solution is chosen from these five runs, and 
the comparison is shown in fig. 1 in average relative percentage 
deviation (ARPD) over the case of 0.01N, and the RPD is 
computed as: 

RPD = (f – f0.01N)/ f0.01N×100 

where f denotes the objective achieved by the compared case, 

and f0.01N denotes the objective gotten by setting the L to 0.01N. 

From this figure, it can be seen that the results are generally 

the best with L = 0.01N, other than the setting of L = 0.1N on 

the original benchmark set, in which case the setting of L = 

0.1N is the best. In the following experiment, the L is set to 

0.01N. 

The ABHC proposed by Derigset al. [7] is one of the state 

of the art algorithms. In their work, the algorithm is run 

five times independently with 5, 10, 15, 30 and 60 CPU 

minutes, respectively, and they report the best results among 

these runs. They carried out the experiments on 3GHz PCs 

with 2 GB memory. In order to make a relative fair 

comparison, the MRSILS is run in thesame settings and the 

comparison results are listed in Table 1, where NV denotes the 

number of vehicles, TD denotes the total distance, and TD% 

denotes the relative percentage deviation of the MRSILS over 

the ABHC. The results show that the MRSILS is comparable 

to the ABHC, with better for 17 out of 36 instances, and better 

in overall performance. 

 
FIGURE I. OPTIMIZATION OF L 

TABLE I. COMPARISON RESULTS FOR INSTANCES FROM ARCHETTIET AL.[6] 

Instance  ABHC  ILS 

Name |C| α γ  NV TD  NV TD TD% 

P01 50 — —  5 524.61  5 531.03 -1.22 

P02 75 — —  10 829.89  10 831.85 -0.24 

P03 100 — —  8 826.14  8 834.52 -1.02 

P04 150 — —  12 1028.42  12 1066.04 -3.66 

P05 199 — —  16 1302.90  17 1343.67 -3.13 

P11 120 — —  7 1042.12  7 1048.00 -0.57 

P01 50 0.1 0.3  11 776.42  11 764.90 1.48 

P02 75 0.1 0.3  16 1123.98  16 1130.05 -0.54 

P03 100 0.1 0.3  22 1478.59  22 1487.30 -0.59 

P04 150 0.1 0.3  32 2055.18  32 2060.06 -0.24 

P05 199 0.1 0.3  40 2540.06  41 2546.80 -0.27 

P11 120 0.1 0.3  27 2913.09  27 2948.99 -1.23 

P01 50 0.1 0.5  16 1012.56  16 1019.95 -0.73 

P02 75 0.1 0.5  24 1508.73  24 1512.78 -0.27 

P03 100 0.1 0.5  33 2035.91  33 2026.81 0.45 

P04 150 0.1 0.5  49 2912.08  49 2895.16 0.58 

P05 199 0.1 0.5  63 3581.66  63 3579.67 0.06 

P11 120 0.1 0.5  41 4270.38  41 4299.16 -0.67 

P01 50 0.1 0.9  26 1489.64  27 1495.85 -0.42 

P02 75 0.1 0.9  41 2340.09  41 2317.31 0.97 

P03 100 0.1 0.9  56 3145.33  56 3133.99 0.36 

P04 150 0.1 0.9  84 4638.74  84 4618.62 0.43 

P05 199 0.1 0.9  105 5669.26  105 5635.13 0.60 

P11 120 0.1 0.9  67 6890.39  67 6884.85 0.08 

P01 50 0.3 0.7  26 1488.28  26 1497.15 -0.60 

P02 75 0.3 0.7  39 2243.93  39 2253.36 -0.42 

P03 100 0.3 0.7  53 3014.08  53 3020.04 -0.20 

P04 150 0.3 0.7  79 4435.95  79 4376.86 1.33 

P05 199 0.3 0.7  102 5541.09  102 5516.43 0.45 
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P11 120 0.3 0.7  64 6671.04  64 6704.80 -0.51 

P01 50 0.7 0.9  41 2174.54  41 2164.65 0.46 

P02 75 0.7 0.9  61 3266.78  61 3240.56 0.80 

P03 100 0.7 0.9  82 4447.47  82 4406.68 0.92 

P04 150 0.7 0.9  122 6467.17  122 6447.69 0.30 

P05 199 0.7 0.9  161 8297.71  162 8283.38 0.17 

P11 120 0.7 0.9  98 10233.37  99 10239.82 -0.06 

total      114217.55   114163.9 0.05 

 

IV. CONCLUSION 

When using local search methods, an intensive exploration 
of the solution space is performed by moving at each step from 
the current solution to another promising solution in its 
neighbors[12]. The proposed MRSILS removes a node and 
reinserts it to the best location according to SDVRP constraints. 
It performs well, achieves good solution on standard SDVRP 
data set[6], and gets the best solution for 17 instances. It is also 
easy to implement. 
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