

An Iterated Local Search for the Split Delivery

Vehicle Routing Problem

Z.Z. Wen, X.Y. Dong, S. Han

Beijing Key Lab of Traffic Data Analysis and Mining, School of Computer and IT

Beijing Jiaotong University

Beijing, China

Abstract--A multi-restart iterated local search (MRSILS)

algorithm is introduced for the Split Delivery Vehicle Routing

Problem (SDVRP). The initial solution is generated by the

GENIUS and applied the local search procedure by removing one

node from its current route and inserting it into the best locations,

with the possibility of splitting its demand. A node inserting

algorithm is proposed for SDVRP, trying to find a better solution

by an insertion with the consideration of splitting the demand.

The perturbation is applied while certain predefined continuous

no improvement local search steps are occurred. In order to

extend the search space and keeping the quality of the restart

solution, a method is designed for the perturbation that the

perturbed solution is chosen from an elite solution set, while the

best solution is preferred. The object of this work is to minimize

the total travel distance. Experimental results on a benchmark

set show that the MRSILS is competitive with a state of the art

algorithm.

Keywords-SDVRP; local search; perturbation; multi-restart

I. INTRODUCTION

Vehicle Routing Problem with split delivery (SDVRP) is a
variant of capacitated vehicle routing problem (CVRP). The
demand of each node in SDVRP can be served by more than
one vehicle. In SDVRP, there is a set of nodes N with service
demand, infinite homogeneous vehicles V with capacity
constraint k to provide service and one depot D. The vehicles
start and end their tours at the depot withoutthe load
surpassingkduring the tour and the demand of all the nodes
must be satisfied[1].

Compared with other VRPs, SDVRP problem has not been
enough concerned. There are still some excellent works
published. Dror and Trudeau [1], [2]analyze the savings
achieved by allowing deliveries split in some VRP instances
and provide a heuristic algorithm for SDVRP. Nowak et al. [3]
show the potential benefit of split loads and prove the most
benefit occurring with delivery of node just one half of vehicle
capacity. Drorand Trudeau [1] describe valid inequalities for
the SDVRP and Archetti et al. [4]describe a tabu search
algorithm for SDVRP. Chen et al. [5] and Archetti et al. [6] put
forward hybrid heuristics for SDVRP combined with the
advantages ofheuristic and optimization methods to improve
calculation efficiency of the single algorithm. Derigset al.[7]
present several local-search-based metaheuristics including
simulated annealing (SA), threshold accepting (TA), record-to-
record travel (RRT), the attribute based hill climber heuristic
(ABHC) and the attribute based local beam search heuristic
(ABLBS) for the SDVRP, and the ABHC get the best
experimental results.

Boudia et al. [8] point out that the using of dynamic
programming increases the running time by 30% without
significant improvement than the one found by a greedy
heuristic.In this work, we propose a greedy iterated local search
(ILS) algorithm in which the insertion move in local search
phase follows the simple principle that always do the best
insertion, considering the possible splitting of the demand. In
order to extend the search space effectively, without
deteriorating the quality of the restart solution, a multi-restart
perturbation method is designed, which is derived from the
idea of Dong et al. [9].

The rest of this paper is organized as follows. In section 2,
we present our multi-restart local search algorithm, including
the method for the initial solution, local search structure and
perturbation method. In section 3, the experimental resultsare
reported and analyzed. In section 4, we put forward the
innovation and deficiency point of our algorithm.

II. MULTI-RESTART ITERATED LOCAL SEARCH ALGORITHM

The followingtermsare used in this paper. The number of
nodes is N. Direct trip is a tour in which a vehicle starts from
the depot, goes directly to a customer, deliversk units and then
turns back directly to the depot [4]. Remove savingof nodeiis

denoted by RSi and computed by RSi=
 


)(

)(
iRr pqiqpi ccc

,

where R(i) is all the cars that visit node i in current solution; p
and q are the predecessor and the successor of node i in route r;
cpidenotes the distance between node p and i and so on.
Remove saving listRSLis defined as a non-increasing list of RSi
for all node i.The minimum cost for inserting node i into route
r is denoted by ICir =min {csi + cit - cst}, where s and t are two
adjacent nodes in route r. The minimum costs for inserting
node i into all the routes in Rformingthe insert cost list of nodei,
denoted by ICLi, and the elements in which are sorted in
ascending way.

There are two phases in local search. In phase 1, if the
demands of some nodes are larger than k, then the nodes will
be divided into two parts IKand IR. Part IKcontains the nodes
with demand surpassing k, and the demand of the node i in IK is

set tok⌊di/k⌋. Then nodes are created as IK' for the nodes in IK
with non-zero remaining demand. Part IRis the remaining nodes
by removing IK from I, i.e. IR = I\IK. Initial solution for IK is
generated by adding direct trips for every node. We use

GENIUS [10] for IR∪IK' to generate a big TSP tour, and then

split the tour by k. The initial solution consists of the above two
initial solutions.

International Conference on Computer Information Systems and Industrial Applications (CISIA 2015)

© 2015. The authors - Published by Atlantis Press 43

In phase 2, we propose a multi-restart iterated local search
for SDVRP. We do the local search by removing node iand
then reinserting it into another position according to the method
presented in section 2.1. The searching order of node i is
arranged by RSL. This arrangement is based on the hypothesis
that searching the node with larger remove saving can achieve
a better solution with greater possibility. A qualified solution
pool is also maintained to enlarge the restart-solution space.
The pool is designed for the perturbation function, which is the
solution chosen from the pool is perturbed to generate the start
solution for the next local search. The algorithm is names
MRSILS and the pseudo-code is shown in algorithm 1, where
s0 is the initial solution; s' is the current solution; s* is the
current best solution; s'' is the solution which is the result of
local search starting from s'; the number of nodes is denoted by
N; Sis the solution poolstoring a set of solutions;
pool_sizerepresents the maximum size of S.

Algorithm 1: Multi-restart local search frame

1. Generate s0, s' ← s0, s* ← s0, i, flag ← false, S← ϕ,

pool_size;

2. while (termination criterion is not satisfied) do

3. Compute the RSL for s';

4. i← 0;

5. while (i<N) do

6. s'' = LocalSearch(s', i);

7. ifs'' is better than s'then

8. s'← s'';

9. endif
10. if s' is better than

s*
 then

11. s*
← s', flag←true;

12. endif
13. if the perturbation limitation is met then

14. ifflag is true then

15. S←ϕ, flag← false;

16. endif
17. S←accept(S, s');

18. s'←perturb(S, s
*
);

19. endif
20. i++;

21. endwhile

22. endwhile
23. Stop and output s

*
.

In step 17 of the algorithm 1, the accept(S, s') is used to
estimate whether s' is qualified to be added to S: if the size of S
is less than pool_size, add s'to S; otherwise if s' is better than
the worst one in S, then remove the worst and insert s' into S.
The solutions in Sare several good solutions around the current
best solution s*, so choosing a solution from it to generate the
restart solution is a reasonable option. The perturbation method
in step 18 is shown in section 2.2.

A. Insertion Method

In the localsearch, we successively remove a node from the
current solution and reinsert it to its best location. The insertion
is designed as follows to support the possible split operations.
As for the selection of the least cost move of node i, all the
routes with surplus capacity larger than the demand of node i
are checked, in addition to the combination of several routes

with least insertion cost. The whole insertion procedure is
shown as below.

Step1: Remove node i from s' and compose route list RLi;

Step 2: Compute the insertion cost ICir for route r in RLi,
whose surplus capacity can satisfy the demand of node i,
denote the route with minimumICir by rmin, and set minic to ICir;
if it does not exist, setminicto a very large number;

Step 3: Compute the minimum cost minisfor the case of the
sum of the surplus capacity of the first z routes in RLi is larger
than the demand of node i, while the first z– 1 routes can not
satisfy the demand, where the routes considered above have
most least insertion cost and the surplus capacity of each one is
smaller than the demand of node i; if such case does not exist,
the minis is a very large number;

Step 4: Insert the node i to the case indicated by the smaller
minis and minic;

B. Perturbation Strategy

The perturbed solution and the perturbation method have a
great influence on the quality of the final best solution. There
are two steps for the perturbation strategy. Firstly choose the
solution which will be perturbed; secondly perturb the chosen
solution. As for the first step, when the S is full, we choose one
randomly from it; otherwise the current best solution s* is
chosen. The perturbation method is shown as algorithm 2.

Usually, perturbation is occurred when the local search is
trapped in a local optimum, i.e. the current solution can not be
improved by re-inserting any node.

Algorithm 2: Perturbation strategy

1. Choosing two routes r1 and r2from the solution being

perturbed randomly;

2. Generate start nodes Ai and Bifor these two routes

randomly;

3. Randomly generateCAthe numberof being perturbed

nodes for r1;

4. Mark CA nodes starting from Ai on path r1 as set NRA;

5. Suppose the total demand of node set NR is denoted by dR,

and the surplus capacity of route r is denoted by sr, then

take the maximal number of nodes in r2 starting from Bi as

NRB, satisfying sr1 + dRA - dRB> 0;

6. If all of the nodes in NRA can be served by r2, the

perturbation can be implemented by exchanging the NRA

and NRBdirectly ; otherwise, exchange the NRA and NRB with

the splitting of the last node in NRA .
However, it can be assumed that the local search can hardly

improve the solution further after checking certain number of
nodes without improvement, and so make a perturbation to
continue the local search is reasonable in such a case. We set
the above number of insertion nodes as the criterion for the
perturbation in step 13 in algorithm 1, which is denoted by L.

III. EXPERIMENTAL RESULTS

The problems 1-5 and 11 from Gendreauet al.[11] are
considered in this work. The customer number of these
instances is between 50 and 199. As proposed by Archetti et
al.[4], the demand of the customers is changed by introducing

44

two parameters αand γ, where αand γin the interval [0, 1] and
α≤γ. The demand di of customer i is set todi = αk + δ (γ – α) k,
where δ is a randomly number in [0, 1]. The (α, γ) are set as
follows: (0.1, 0.3), (0.1, 0.5), (0.1, 0.9), (0.3, 0.7), (0.7, 0.9).
The instance set used in this work is provided warmheartedly
by C. Archetti, and it is the same with what is used in Derigset
al. [7]. We get the results with 1.3GHz CPU with 3GB memory
and the algorithm is implemented in C++.

In order to optimize the perturbation, the parameter L is set

to ⌈0.01N⌉, ⌈0.1N⌉, ⌈0.5N⌉ and N, respectively. The MRSILS
is run 5 independent times for each case with the five CPU
minutes. The best solution is chosen from these five runs, and
the comparison is shown in fig. 1 in average relative percentage
deviation (ARPD) over the case of 0.01N, and the RPD is
computed as:

RPD = (f – f0.01N)/ f0.01N×100

where f denotes the objective achieved by the compared case,

and f0.01N denotes the objective gotten by setting the L to 0.01N.

From this figure, it can be seen that the results are generally

the best with L = 0.01N, other than the setting of L = 0.1N on

the original benchmark set, in which case the setting of L =

0.1N is the best. In the following experiment, the L is set to

0.01N.

The ABHC proposed by Derigset al. [7] is one of the state

of the art algorithms. In their work, the algorithm is run

five times independently with 5, 10, 15, 30 and 60 CPU

minutes, respectively, and they report the best results among

these runs. They carried out the experiments on 3GHz PCs

with 2 GB memory. In order to make a relative fair

comparison, the MRSILS is run in thesame settings and the

comparison results are listed in Table 1, where NV denotes the

number of vehicles, TD denotes the total distance, and TD%

denotes the relative percentage deviation of the MRSILS over

the ABHC. The results show that the MRSILS is comparable

to the ABHC, with better for 17 out of 36 instances, and better

in overall performance.

FIGURE I. OPTIMIZATION OF L

TABLE I. COMPARISON RESULTS FOR INSTANCES FROM ARCHETTIET AL.[6]

Instance ABHC ILS

Name |C| α γ NV TD NV TD TD%

P01 50 — — 5 524.61 5 531.03 -1.22

P02 75 — — 10 829.89 10 831.85 -0.24

P03 100 — — 8 826.14 8 834.52 -1.02

P04 150 — — 12 1028.42 12 1066.04 -3.66

P05 199 — — 16 1302.90 17 1343.67 -3.13

P11 120 — — 7 1042.12 7 1048.00 -0.57

P01 50 0.1 0.3 11 776.42 11 764.90 1.48

P02 75 0.1 0.3 16 1123.98 16 1130.05 -0.54

P03 100 0.1 0.3 22 1478.59 22 1487.30 -0.59

P04 150 0.1 0.3 32 2055.18 32 2060.06 -0.24

P05 199 0.1 0.3 40 2540.06 41 2546.80 -0.27

P11 120 0.1 0.3 27 2913.09 27 2948.99 -1.23

P01 50 0.1 0.5 16 1012.56 16 1019.95 -0.73

P02 75 0.1 0.5 24 1508.73 24 1512.78 -0.27

P03 100 0.1 0.5 33 2035.91 33 2026.81 0.45

P04 150 0.1 0.5 49 2912.08 49 2895.16 0.58

P05 199 0.1 0.5 63 3581.66 63 3579.67 0.06

P11 120 0.1 0.5 41 4270.38 41 4299.16 -0.67

P01 50 0.1 0.9 26 1489.64 27 1495.85 -0.42

P02 75 0.1 0.9 41 2340.09 41 2317.31 0.97

P03 100 0.1 0.9 56 3145.33 56 3133.99 0.36

P04 150 0.1 0.9 84 4638.74 84 4618.62 0.43

P05 199 0.1 0.9 105 5669.26 105 5635.13 0.60

P11 120 0.1 0.9 67 6890.39 67 6884.85 0.08

P01 50 0.3 0.7 26 1488.28 26 1497.15 -0.60

P02 75 0.3 0.7 39 2243.93 39 2253.36 -0.42

P03 100 0.3 0.7 53 3014.08 53 3020.04 -0.20

P04 150 0.3 0.7 79 4435.95 79 4376.86 1.33

P05 199 0.3 0.7 102 5541.09 102 5516.43 0.45

45

P11 120 0.3 0.7 64 6671.04 64 6704.80 -0.51

P01 50 0.7 0.9 41 2174.54 41 2164.65 0.46

P02 75 0.7 0.9 61 3266.78 61 3240.56 0.80

P03 100 0.7 0.9 82 4447.47 82 4406.68 0.92

P04 150 0.7 0.9 122 6467.17 122 6447.69 0.30

P05 199 0.7 0.9 161 8297.71 162 8283.38 0.17

P11 120 0.7 0.9 98 10233.37 99 10239.82 -0.06

total 114217.55 114163.9 0.05

IV. CONCLUSION

When using local search methods, an intensive exploration
of the solution space is performed by moving at each step from
the current solution to another promising solution in its
neighbors[12]. The proposed MRSILS removes a node and
reinserts it to the best location according to SDVRP constraints.
It performs well, achieves good solution on standard SDVRP
data set[6], and gets the best solution for 17 instances. It is also
easy to implement.

ACKNOWLEDGMENTS

Prof. Y. Lin provides lots of support. Thanks to Prof. C.
Archetti for the data set and the help of U. Derigs. This work is
supported by The FundamentalResearchFunds for the Central
Universities of China (Project Ref. 2014JBM034, Beijing
Jiaotong University).

REFERENCES

[1] Dror M. and P. Trudeau, Savings by split delivery routing.

TransportationScience, 23, pp. 141–145, 1989.
[2] Dror M. and P. Trudeau, Split delivery routing. NavalRes.Logistics, 37,

pp. 383–402, 1990.

[3] Nowak M, Ergun O, White C, Pickup and Delivery with Split Loads.
TransportationScience, 42, pp. 32–43, 2008.

[4] Archetti C, Speranza M and Hertz A, A tabu search algorithm for the

split delivery vehicle routing problem. TransportScience, 40, pp. 64–73,
2006.

[5] Chen S, Golden B and Wasil E, The split delivery vehicle routing

problem: Applications, algorithms, test problems, and computational
results. JournalofNetworks, 49, pp. 318–329, 2007.

[6] Archetti C, Speranza M and Savelsbergh M, An optimization based

heuristic for the split delivery vehicle routing problem.
TransportScience, 42, pp. 22–31, 2008.

[7] U Derigs, B Li and U Vogel, Local search-based metaheuristics for the

split delivery vehicle routing problem.Journalofthe
OperationalResearchSociety, 61, pp. 1356–1364, 2010.

[8] Boudia M., Prins C., Reghioui M., An effective memetic algorithm with

population management for the split delivery vehicle routing problem.

LectureNotesinComputerScience, 4771, pp. 16–30, 2007.

[9] Xingye Dong，Houkuan Huang and Maciek Nowak, A Multi-Restart

Iterated Local Search Algorithm for the Permutation Flow Shop

Problem Minimizing Total Flow Time.ComputerOperationalResearch,

40(2), pp. 627–632, 2013.
[10] Gendreau, M., A. Hertz, G. Laporte, New insertion and

postoptimization procedures for the traveling salesman problem.

OperationalResearch, 40, pp. 1086–1094, 1992.
[11] Gendreau M., A. Hertz, G. Laporte, A tabu search heuristic for the

vehicle routing problem. ManagementScience, 40, pp. 1276–1290, 1994.

[12] Xingye Dong，Houkuan Huang and Ping Chen, An iterated local

search algorithm for the permutation flowshop problem with total

flowtime criterion.ComputerOperationalResearch, 36(5), pp. 1664–

1669, 2008.

46

