

Pairwise Test Generation Based on Parallel Genetic

Algorithm with Spark

R.Z. Qi

College of Computer and Information

 Hohai University

 Nanjing, Chin

Z.J. Wang

College of Computer and Information

 Hohai University

 Nanjing, China

S.Y. Li

College of Science

Hohai University

Nanjing, China

Abstract--Pairwise testing is an effective combinatorial test

generation technique that can generate tests covering all pairs of

parameter values. Genetic algorithm has been used for pairwise

test generation by researchers. It can often produce smaller test

suite, but typically require a longer computation. To solve this

problem, in this paper we use spark, an in-memory and iterative

computing framework, to parallelize genetic algorithm for

pairwise test generation. We propose fitness evaluation

parallelization, which evaluates each individual’s fitness value on

spark’s workers. A preliminary evaluation of the proposal

algorithm is conducted to verify the effectiveness compared with

those of other algorithms published in the literature. Experiments

show that the proposed algorithm can generate better results

among these algorithms.

Keywords-combinatorial testing; pairwise testing; parallel

genetic algorithmp; spark; test generation

I. INTRODUCTION

Pairwise testing has been proven to be a very effective
combinatorial testing strategy that is based on the observation
that most faults are caused by interactions of at most two
factors. How to generate the minimum test suite, which can
cover combinations of all pairs, is an important research area
of pairwise testing. As generating a minimum test suite for
pairwise testing is an NP-complete problem [1], researchers
have tried various methods to generate near-minimum test
suite. In surveys [2] [3], there have been four main groups of
methods: greedy algorithm, heuristic search algorithm,
mathematic method, and random method. Among these
methods, greedy algorithm is the most widely used method for
combinatorial test generation. Heuristic search algorithm
formulates combinatorial test generation problem as a search
problem, and applies search techniques such as genetic
algorithm (GA) to solve it. These algorithms can often
produce a smaller test suite than that from the greedy
algorithm, but typically require a longer computation [2].

To deal with the heavy computational effort challenge, we
propose a parallel genetic algorithm based on Spark [4]
(PGAS), and use PGAS to generate pairwise test suite. GA is
metaheuristic that simulates the natural process of evolution to
solve optimization problems [5]. GA is naturally parallelizable,

since fitness evaluations for individuals and most variation
operators can easily be performed in parallel. Spark, which is
an in-memory and iterative computing framework, is suitable
for handling the parallelization of GA for test generation.

The remainder of the paper is organized as follows. In
Section 2, we introduce related work. Then, Section 3
describes our GA for pairwise test generation. Section 4
presents our approach to parallelize GA based on spark to
generate pairwise test suite. Section 5 reports the evaluation of
our approach. The conclusions and future work are drawn in
Section 6.

II. RELATED WORK

GA has been used for combinatorial test generation by
researchers. The paper [6] proposed a GA-based technique to
generate pairwise test configurations. It also gave some
experiments. In [7] the author gave a genetic algorithm for
pairwise test case generation called GAPTS. GAPTS encodes
chromosome, which represents a test set, with an array of
integer values. The fitness function is the total number of
distinct pairs captured by the individual. GAPTS can produce
pairwise test sets with smaller size compared with other
methods. But it requires significantly longer processing time.
The paper [8] also used GA to generate pairwise test set, and
described an open source tool called PWiseGen. [9] designed
six variants from GA, Particle Swarm Optimization, and Ant
Colony Algorithm by reversing and randomizing their
mechanisms to generate 2-way covering array. It also gave
some experiments, and these methods required a longer
computation.

Parallel Genetic Algorithm (PGA) is new technologies for
improving the performance of metaheuristic search techniques.
Both [10] and [11] use MapReduce model to parallelize
genetic algorithm, but their approaches don’t take into account
the field of automatic test data generation. The article [12]
proposed a PGA based on Hadoop MapReduce for JUnit test
suite generation. The global parallelization model has been
exploited, and a preliminary evaluation of the algorithm has
been carried out to assess the speed-up. In [13] the authors
used MapReduce model to support the parallelization of GA

International Conference on Computer Information Systems and Industrial Applications (CISIA 2015)

© 2015. The authors - Published by Atlantis Press 67

for test data generation and their migration to the cloud. Three
levels of parallelization models were suggested and the global
parallelization model using Google App Engine framework
were implemented. The paper [14] used PGA to generate
prioritized pairwise test suite for software product lines. The
algorithm could obtain smaller covering arrays with an
acceptable performance difference with the greedy algorithm.
All the above work parallelized GA with MapReduce. Since
GA is an iterative and CPU-intensive algorithm, it can benefit
from Spark’s in-memory and iterative computing ability.
However, to the best of our knowledge, in the literature there
are no methods that have been proposed for generating
pairwise test suite using Spark to parallelize GA. In this paper
we will try to parallelize genetic algorithm based on Spark to
generate pairwise test suite.

III. GA FOR PAIRWISE TESTING

When generating test suite with pairwise testing, input
space of the software under test (SUT) can be modeled as a
collection of parameters where each parameter assumes one or
more values. Pairwise testing aims at selecting a subset from
the complete set of parameter values combinations such that
all pairs of parameter values are in the selected subset.

GA is a metaheuristic search technique that simulates the
evolution of natural systems. When using GA to solve
pairwise test generation problem, the following design
decisions have to be made: chromosome encoding, fitness
function, and genetic operations.

A. Chromosome Encoding

Chromosome encoding is the representation of an
individual which is the candidate solution of the problem. In
the scenario of pairwise test generation, the solution is often a
suitable test suite (a set of test cases) of the SUT. In the
literature, there are several encoding methods such as bit
strings, floating point, and integer. We will use integer
encoding to represent the individual, according to [8]. This
encoding method encodes a set of test cases as an array of
integer values. Each integer corresponds to a possible value of
a parameter of the SUT. Thus an individual is an array of lists
of integers, and each list represents a test case. The length of
each list is equal to the number of the parameters. The size of
an individual is the number of the test cases.

B. Fitness Function

A fitness function for pairwise testing is often a given
coverage criteria, to measure the goodness of an individual.
The article [15] defines that 100% pairwise coverage requires
that every possible pair of interesting values of any two
parameters are included in some test case. We will use this
100% pairwise coverage as our fitness function. So, the fitness
function is the total number of different pairs covered by all
the test cases in an individual. If an individual covers more
different pairs than others, it is better than others. An
individual becomes a solution when it covers all pairs.

C. Genetic Operations

Another important issue of GA is genetic operations such
as selection, crossover, and mutation. As for the selection
operator, we employ fitness proportionate selection to

determine which individuals to choose as parents for
reproduction. As for the crossover operator, we use single-
point crossover with a probability of 0.8 to produce offspring.
We use integer randomization mutation to change each test
case with a given probability of 0.2, and replace it with a new
random test case.

IV. PARALLEL GENETIC ALGORITHM

A. Parallelization

According to [16], there are four parallel models: global
model, distributed model, cellular model, and hybrid model.
Spark is based on the master-slave distributed computing
model; it is suitable for the global model of GA parallelization.
So, PGAS is designed based on global model for fitness
evaluations.

Our basic idea is to parallelize initial population into spark
Resilient Distributed Dataset (RDD) and evaluate each
individual’s fitness value on the workers. Then the driver
collects the results and applies genetic operations. The lineage
graph of parallel fitness evaluation is shown in Figure1. First,
initial population is parallelized into spark RDD by a
parallelize() method. Then a map() is applied to transform
each individuals of the population into the <individual,
fitness> key-value pairs. Finally, the collectAsMap() action
starts to collect these pairs as HashMap.

FIGURE I. RDD LINEAGE GRAPH FOR PARALLEL FITNESS

EVALUATION

B. Algorithm

Algorithm 1 sketches the pseudocode of PGAS. At the
beginning, AP, the number of all pairs of parameter values to
be covered, is generated (Line1). The initial popsize
individuals, each consisting of m test cases, which are created
randomly by picking each slot uniformly among all possible
values, are generated to form the initial population (Line2).
The method parallelize() parallelizes the initial population
(Line3). In the external while loop (Line4-22) the algorithm
assigns one to the generation iterator, then enters the inner
while loop (Line 5-6). In each iteration of the inner while loop
(Line6-19) the algorithm first parallelizes fitness evaluations
(Line7-10) as illustrated in Figure1. Then the <individual,
fitness> key-value pairs collected by the driver are sorted by
the fitness value (Line 11). If the first pair’s value is AP, its
key is the best individual, and will be returned (Line 12).

initial population

parallelized population

parallelize()

fitnessRDD

map(_.assessFitness())

collectAsMap()

result

68

Otherwise, the algorithm enters a for loop which applies the
genetic operators including selection, crossover, and mutation
(Line13-17). After leaving the for loop, the algorithm enters
the inner while loop to start the evolution again. The evolution
process is continued until it reaches the maximum number of
generation. If the algorithm can’t find the best individual
which covers all pairs, m will be incremented by one (Line 20)
and one test case will be added to each individual of the
population randomly (Line 21), then the external while loop
runs again.

Algorithm 1 Parallel Genetic Algorithm
Input : pv.txt: parameter-values text file

k: number of parameters in SUT
ni: number of values for each parameter

m: test suite size

 popsize: desired population size
Output: the best individual

1: AP ← getNumOfAllPairs(k, ni)

2: P ← initializePop(m, popsize, “pv.txt”)

3: parallelize(P)
4: While (true)

5: it ← 1

6: While (it ≤ max)

7: For each individual pi ∈ P do

8: fitnessRDD ← pi.map(_.assessFitness())

9: End for

10: result ← fitnessRDD.collectAsMap()

11: sortByValue(result)

12: If result.top = AP then return top
13: For popsize/2 times do

14: parents ← selection(P)

15: children ← crossover(P)

16: P ← mutate(children)

17: End for

18: it ← it + 1

19: End While

20: m ← m + 1

21: addTestCase(P)
22: End While

V. PRELIMINARY EVALUATION

We have implemented PGAS on spark using Java. In this
section we performed a series of experiments to assess the
effectiveness of PGAS. According to [1], effectiveness is
measured by the number of test cases generated by the
algorithm.

The experiments of PGAS were performed on a small
cluster consisting of 5 nodes, where each node has one Intel
Core i5 750 Quad-Core at 2.66GHz, 2GB RAM. One node is
Namenode, and the other four nodes are Datanodes, which
total have 16 cores. Each node is running at the Ubuntu 12.04,
Java 1.7, Hadoop 2.4, and Spark 1.1.0.

The experiments were conducted using an input of k
parameters, each with p distinct values. The parameter sizes
can be represented as pk. As often used in literature, we
exploited five benchmark problems of different size: 34, 313,
415317229, 41339235, and 2100. The parameters of PGAS
were described as follow. The population was composed of
500 individuals. PGAS used fitness proportionate selection,
single-point crossover operator (with probability 0.8) and
integer randomization mutation (with probability 0.2). The
generation number on each core of the workers was 104, so

the total generation number of PGAS is 16*104=1.6*105.
Because of the stochastic nature of GA, we performed 30
independent runs of each benchmark to gain sufficient
experimental data.

We compared the effectiveness of GPAS with those of
other existing approaches: AETG [17], IPO [1], CTS [18],
GAPTS [7], and PWiseGen [8]. Among these approaches,
AETG and IPO uses greedy algorithm. CTS is algorithm
which uses covering arrays. GAPTS and PWiseGen are based
on serial genetic algorithm. The results of conducted
experiments are shown in Table 1. In 30 independent runs,
PGAS can generate fewer test cases than other algorithms in
benchmark S3 and S4. In S3, the 33 test cases were found in
the generation # 2561(the best case). In S4, the 25 test cases
were found in the generation # 335(the best case). The size of
test suite generated by PGAS in benchmark S1, S2, S5 was
equal to the best result in other algorithms.

TABLE I. COMPARISON WITH EXISTING APPROACHES

Paramet

er sizes

AET

G

IP

O

CT

S

GAPT

S

PWise

Gen
PGAS

S1=34 9 9 9 9 9 9

S2=313 15 19 15 15 15 15

S3=41531

7229
41 36 39 35 34 33

S4=41339

235
28 29 29 27 26 25

S5=2100 10 15 10 10 10 10

VI. CONCLUSION AND FUTURE WORK

In this paper, we explore the use of spark to parallelize
genetic algorithm for pairwise test generation. Based on the
global model of GA parallelization, we propose fitness
evaluation parallelization, which evaluates each individual’s
fitness value on the workers. A preliminary evaluation of our
PGAS is conducted on a small cluster to verify the
effectiveness compared with those of other algorithms
published in the literature. Experiments show that the
proposed algorithm can generate better results among these
algorithms.

In future, first we will try to parallelize genetic operation
by spark to get more optimal results in shorter execution time.
Second, we plan to conduct experiments on Amazon EC2 to
check the effectiveness and scalability of PGAS.

ACKNOWLEDGMENTS

This research was supported in part by Fundamental
Research Funds for the Central Universities 2010B06914;
Nature Science Fund of Jiangsu Province 2013517111.

REFERENCES

R

[1] Y. Lei and K.C. Tai. In-parameter-order: a test generation strategy for
pairwise testing. in Proceedings of the Third IEEE International High-
Assurance Systems Engineering Symposium. Wshington, DC. p. 254-
261. 1998.

[2] C.H. Nie and L. Hareton, A survey of combinatorial testing. ACM
Comput. Surv. 43(2). p. 1-29. 2011.

69

[3] S.L.Y. Khalsa, An orchestrated survey of available algorithms and tools
for Combinatorial Testing. Carleton University, Department of Systems
and Computer Engineering. 2014.

[4] M. Zaharia, N.M.M. Chowdhury and M. Franklin, et al., Spark: Cluster
Computing with Working Sets., EECS Department, University of
California, Berkeley. 2010.

[5] D.E. Goldberg, Genetic Algorithms in Search, Optimization and
Machine Learning. 1st ed., Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc. 1989.

[6] S.A. Ghazi and M.A. Ahmed. Pair-wise test coverage using genetic
algorithms. in The 2003 Congress on Evolutionary Computation. p.
1420-1424. 2003.

[7] J.D. McCaffrey. An Empirical Study of Pairwise Test Set Generation
Using a Genetic Algorithm. in 2010 Seventh International Conference on
Information Technology: New Generations (ITNG). Las Vegas, NV. p.
992-997. 2010.

[8] P. Flores and C. Yoonsik. PWiseGen: Generating test cases for pairwise
testing using genetic algorithms. in Computer Science and Automation
Engineering (CSAE), 2011 IEEE International Conference on. Shanghai.
p. 747-752. 2011.

[9] C.H. Nie, H.Y. Wu and Y.L. Liang, et al. Search Based Combinatorial
Testing. in Software Engineering Conference (APSEC), 2012 19th Asia-
Pacific. Hong Kong. p. 778-783. 2012.

[10] C. Jin, C. Vecchiola and R. Buyya. MRPGA: An Extension of
MapReduce for Parallelizing Genetic Algorithms. in Proceedings of the
2008 Fourth IEEE International Conference on eScience. IEEE
Computer Society. p. 214-221. 2008.

[11] A. Verma, X. Llor and D.E. Goldberg, et al. Scaling Genetic Algorithms
Using MapReduce. in Proceedings of the 2009 Ninth International
Conference on Intelligent Systems Design and Applications. IEEE
Computer Society. p. 13-18. 2009.

[12] L. Di Geronimo, F. Ferrucci and A. Murolo, et al. A Parallel Genetic
Algorithm Based on Hadoop MapReduce for the Automatic Generation
of JUnit Test Suites. in Proceedings of the 2012 IEEE Fifth International
Conference on Software Testing, Verification and Validation. IEEE
Computer Society. p. 785-793. 2012.

[13] F. Ferrucci, S. Di Martino and V. Maggio, et al., Towards Migrating
Genetic Algorithms for Test Data Generation to the Cloud, in Software
Testing in the Cloud: Perspectives on an Emerging Discipline. IGI
Global. p. 113-135. 2012.

[14] R.E. Lopez-Herrejon, J. Ferrer and F. Chicano, et al. A parallel
evolutionary algorithm for prioritized pairwise testing of software
product lines. in 16th Genetic and Evolutionary Computation Conference,
GECCO 2014. Vancouver, BC, Canada: Association for Computing
Machinery. p. 1255-1262. 2014.

[15] M. Grindal, J. Offutt and S.F. Andler, Combination testing strategies: a
survey. p. 167--199. 2005.

[16] G. Luque and E. Alba, Parallel Genetic Algorithms Theory and Real
World Applications, in Studies in Computational Intelligence, Springer
Berlin Heidelberg. Volume 367. p.15-25. 2011.

[17] D.M. Cohen, S.R. Dalal and M.L. Fredman, et al., The AETG system: an
approach to testing based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7). p. 437-444. 1997.

[18] A. Hartman and L. Raskin, Problems and algorithms for covering arrays.
Discrete Mathematics, 284(1-3). p. 149 - 156. 2004.

70

