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Abstract--Pairwise testing is an effective combinatorial test 

generation technique that can generate tests covering all pairs of 

parameter values. Genetic algorithm has been used for pairwise 

test generation by researchers. It can often produce smaller test 

suite, but typically require a longer computation. To solve this 

problem, in this paper we use spark, an in-memory and iterative 

computing framework, to parallelize genetic algorithm for 

pairwise test generation. We propose fitness evaluation 

parallelization, which evaluates each individual’s fitness value on 

spark’s workers. A preliminary evaluation of the proposal 

algorithm is conducted to verify the effectiveness compared with 

those of other algorithms published in the literature. Experiments 

show that the proposed algorithm can generate better results 

among these algorithms. 
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I. INTRODUCTION 

Pairwise testing has been proven to be a very effective 
combinatorial testing strategy that is based on the observation 
that most faults are caused by interactions of at most two 
factors. How to generate the minimum test suite, which can 
cover combinations of all pairs, is an important research area 
of pairwise testing. As generating a minimum test suite for 
pairwise testing is an NP-complete problem [1], researchers 
have tried various methods to generate near-minimum test 
suite. In surveys [2] [3], there have been four main groups of 
methods: greedy algorithm, heuristic search algorithm, 
mathematic method, and random method. Among these 
methods, greedy algorithm is the most widely used method for 
combinatorial test generation. Heuristic search algorithm 
formulates combinatorial test generation problem as a search 
problem, and applies search techniques such as genetic 
algorithm (GA) to solve it. These algorithms can often 
produce a smaller test suite than that from the greedy 
algorithm, but typically require a longer computation [2]. 

To deal with the heavy computational effort challenge, we 
propose a parallel genetic algorithm based on Spark [4] 
(PGAS), and use PGAS to generate pairwise test suite. GA is 
metaheuristic that simulates the natural process of evolution to 
solve optimization problems [5]. GA is naturally parallelizable, 

since fitness evaluations for individuals and most variation 
operators can easily be performed in parallel. Spark, which is 
an in-memory and iterative computing framework, is suitable 
for handling the parallelization of GA for test generation. 

The remainder of the paper is organized as follows. In 
Section 2, we introduce related work. Then, Section 3 
describes our GA for pairwise test generation. Section 4 
presents our approach to parallelize GA based on spark to 
generate pairwise test suite. Section 5 reports the evaluation of 
our approach. The conclusions and future work are drawn in 
Section 6. 

II. RELATED WORK 

GA has been used for combinatorial test generation by 
researchers. The paper [6] proposed a GA-based technique to 
generate pairwise test configurations. It also gave some 
experiments. In [7] the author gave a genetic algorithm for 
pairwise test case generation called GAPTS. GAPTS encodes 
chromosome, which represents a test set, with an array of 
integer values. The fitness function is the total number of 
distinct pairs captured by the individual. GAPTS can produce 
pairwise test sets with smaller size compared with other 
methods. But it requires significantly longer processing time. 
The paper [8] also used GA to generate pairwise test set, and 
described an open source tool called PWiseGen. [9] designed 
six variants from GA, Particle Swarm Optimization, and Ant 
Colony Algorithm by reversing and randomizing their 
mechanisms to generate 2-way covering array. It also gave 
some experiments, and these methods required a longer 
computation.  

Parallel Genetic Algorithm (PGA) is new technologies for 
improving the performance of metaheuristic search techniques. 
Both [10] and [11] use MapReduce model to parallelize 
genetic algorithm, but their approaches don’t take into account 
the field of automatic test data generation. The article [12] 
proposed a PGA based on Hadoop MapReduce for JUnit test 
suite generation. The global parallelization model has been 
exploited, and a preliminary evaluation of the algorithm has 
been carried out to assess the speed-up. In [13] the authors 
used MapReduce model to support the parallelization of GA 
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for test data generation and their migration to the cloud. Three 
levels of parallelization models were suggested and the global 
parallelization model using Google App Engine framework 
were implemented. The paper [14] used PGA to generate 
prioritized pairwise test suite for software product lines. The 
algorithm could obtain smaller covering arrays with an 
acceptable performance difference with the greedy algorithm. 
All the above work parallelized GA with MapReduce. Since 
GA is an iterative and CPU-intensive algorithm, it can benefit 
from Spark’s in-memory and iterative computing ability. 
However, to the best of our knowledge, in the literature there 
are no methods that have been proposed for generating 
pairwise test suite using Spark to parallelize GA. In this paper 
we will try to parallelize genetic algorithm based on Spark to 
generate pairwise test suite. 

III. GA FOR PAIRWISE TESTING 

When generating test suite with pairwise testing, input 
space of the software under test (SUT) can be modeled as a 
collection of parameters where each parameter assumes one or 
more values. Pairwise testing aims at selecting a subset from 
the complete set of parameter values combinations such that 
all pairs of parameter values are in the selected subset.  

GA is a metaheuristic search technique that simulates the 
evolution of natural systems. When using GA to solve 
pairwise test generation problem, the following design 
decisions have to be made: chromosome encoding, fitness 
function, and genetic operations. 

A. Chromosome Encoding 

Chromosome encoding is the representation of an 
individual which is the candidate solution of the problem. In 
the scenario of pairwise test generation, the solution is often a 
suitable test suite (a set of test cases) of the SUT. In the 
literature, there are several encoding methods such as bit 
strings, floating point, and integer. We will use integer 
encoding to represent the individual, according to [8]. This 
encoding method encodes a set of test cases as an array of 
integer values. Each integer corresponds to a possible value of 
a parameter of the SUT. Thus an individual is an array of lists 
of integers, and each list represents a test case. The length of 
each list is equal to the number of the parameters. The size of 
an individual is the number of the test cases. 

B. Fitness Function 

A fitness function for pairwise testing is often a given 
coverage criteria, to measure the goodness of an individual. 
The article [15] defines that 100% pairwise coverage requires 
that every possible pair of interesting values of any two 
parameters are included in some test case. We will use this 
100% pairwise coverage as our fitness function. So, the fitness 
function is the total number of different pairs covered by all 
the test cases in an individual. If an individual covers more 
different pairs than others, it is better than others. An 
individual becomes a solution when it covers all pairs. 

C. Genetic Operations 

Another important issue of GA is genetic operations such 
as selection, crossover, and mutation. As for the selection 
operator, we employ fitness proportionate selection to 

determine which individuals to choose as parents for 
reproduction. As for the crossover operator, we use single-
point crossover with a probability of 0.8 to produce offspring. 
We use integer randomization mutation to change each test 
case with a given probability of 0.2, and replace it with a new 
random test case. 

IV. PARALLEL GENETIC ALGORITHM 

A. Parallelization 

According to [16], there are four parallel models: global 
model, distributed model, cellular model, and hybrid model. 
Spark is based on the master-slave distributed computing 
model; it is suitable for the global model of GA parallelization. 
So, PGAS is designed based on global model for fitness 
evaluations. 

Our basic idea is to parallelize initial population into spark 
Resilient Distributed Dataset (RDD) and evaluate each 
individual’s fitness value on the workers. Then the driver 
collects the results and applies genetic operations. The lineage 
graph of parallel fitness evaluation is shown in Figure1. First, 
initial population is parallelized into spark RDD by a 
parallelize() method. Then a map() is applied to transform 
each individuals of the population into the <individual, 
fitness> key-value pairs. Finally, the collectAsMap() action 
starts to collect these pairs as HashMap. 

 

FIGURE I.  RDD LINEAGE GRAPH FOR PARALLEL FITNESS 

EVALUATION 

B. Algorithm 

Algorithm 1 sketches the pseudocode of PGAS. At the 
beginning, AP, the number of all pairs of parameter values to 
be covered, is generated (Line1). The initial popsize 
individuals, each consisting of m test cases, which are created 
randomly by picking each slot uniformly among all possible 
values, are generated to form the initial population (Line2). 
The method parallelize()  parallelizes the initial population 
(Line3). In the external while loop (Line4-22) the algorithm 
assigns one to the generation iterator, then enters the inner 
while loop (Line 5-6). In each iteration of the inner while loop 
(Line6-19) the algorithm first parallelizes fitness evaluations 
(Line7-10) as illustrated in Figure1. Then the <individual, 
fitness> key-value pairs collected by the driver are sorted by 
the fitness value (Line 11). If the first pair’s value is AP, its 
key is the best individual, and will be returned (Line 12). 

initial population 

parallelized population 

parallelize() 

fitnessRDD 

map(_.assessFitness()) 

collectAsMap() 

result 
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Otherwise, the algorithm enters a for loop which applies the 
genetic operators including selection, crossover, and mutation 
(Line13-17). After leaving the for loop, the algorithm enters 
the inner while loop to start the evolution again. The evolution 
process is continued until it reaches the maximum number of 
generation. If the algorithm can’t find the best individual 
which covers all pairs, m will be incremented by one (Line 20) 
and one test case will be added to each individual of the 
population randomly (Line 21), then the external while loop 
runs again. 

Algorithm 1 Parallel Genetic Algorithm 
Input :      pv.txt: parameter-values text file 

k: number of parameters in SUT 
ni: number of values for each parameter 

m: test suite size 

               popsize: desired population size 
Output: the best individual 

1: AP ← getNumOfAllPairs(k, ni) 

2: P ← initializePop(m, popsize, “pv.txt”) 

3: parallelize(P) 
4: While (true) 

5:     it ← 1 

6:     While (it ≤ max) 

7:         For each individual pi ∈ P do 

8:             fitnessRDD ← pi.map(_.assessFitness()) 

9:         End for 

10:       result ← fitnessRDD.collectAsMap() 

11:       sortByValue(result) 

12:       If result.top = AP then return top 
13:       For popsize/2 times do  

14:            parents ← selection(P) 

15:            children ← crossover(P) 

16:            P ← mutate(children) 

17:       End for 

18:       it  ← it + 1 

19:    End While 

20:    m ← m + 1 

21:    addTestCase(P) 
22: End While 

V. PRELIMINARY EVALUATION 

We have implemented PGAS on spark using Java. In this 
section we performed a series of experiments to assess the 
effectiveness of PGAS. According to [1], effectiveness is 
measured by the number of test cases generated by the 
algorithm. 

The experiments of PGAS were performed on a small 
cluster consisting of 5 nodes, where each node has one Intel 
Core i5 750 Quad-Core at 2.66GHz, 2GB RAM. One node is 
Namenode, and the other four nodes are Datanodes, which 
total have 16 cores. Each node is running at the Ubuntu 12.04, 
Java 1.7, Hadoop 2.4, and Spark 1.1.0. 

The experiments were conducted using an input of k 
parameters, each with p distinct values. The parameter sizes 
can be represented as pk. As often used in literature, we 
exploited five benchmark problems of different size: 34, 313, 
415317229, 41339235, and 2100. The parameters of PGAS 
were described as follow. The population was composed of 
500 individuals. PGAS used fitness proportionate selection, 
single-point crossover operator (with probability 0.8) and 
integer randomization mutation (with probability 0.2). The 
generation number on each core of the workers was 104, so 

the total generation number of PGAS is 16*104=1.6*105. 
Because of the stochastic nature of GA, we performed 30 
independent runs of each benchmark to gain sufficient 
experimental data. 

We compared the effectiveness of GPAS with those of 
other existing approaches: AETG [17], IPO [1], CTS [18], 
GAPTS [7], and PWiseGen [8]. Among these approaches, 
AETG and IPO uses greedy algorithm. CTS is algorithm 
which uses covering arrays. GAPTS and PWiseGen are based 
on serial genetic algorithm. The results of conducted 
experiments are shown in Table 1. In 30 independent runs, 
PGAS can generate fewer test cases than other algorithms in 
benchmark S3 and S4.  In S3, the 33 test cases were found in 
the generation # 2561(the best case). In S4, the 25 test cases 
were found in the generation # 335(the best case). The size of 
test suite generated by PGAS in benchmark S1, S2, S5 was 
equal to the best result in other algorithms.  

TABLE I.  COMPARISON WITH EXISTING APPROACHES 

Paramet

er sizes 

AET

G 

IP

O 

CT

S 

GAPT

S 

PWise

Gen 
PGAS 

S1=34 9 9 9 9 9 9 

S2=313 15 19 15 15 15 15 

S3=41531

7229 
41 36 39 35 34 33 

S4=41339

235 
28 29 29 27 26 25 

S5=2100 10 15 10 10 10 10 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we explore the use of spark to parallelize 
genetic algorithm for pairwise test generation. Based on the 
global model of GA parallelization, we propose fitness 
evaluation parallelization, which evaluates each individual’s 
fitness value on the workers. A preliminary evaluation of our 
PGAS is conducted on a small cluster to verify the 
effectiveness compared with those of other algorithms 
published in the literature. Experiments show that the 
proposed algorithm can generate better results among these 
algorithms.  

In future, first we will try to parallelize genetic operation 
by spark to get more optimal results in shorter execution time. 
Second, we plan to conduct experiments on Amazon EC2 to 
check the effectiveness and scalability of PGAS. 
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