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Abstract—Reactive power dispatch, which may have many local 

optima, is an important and challenging task in the operation and 

control of electric power system. This paper presents a Self-

adapti ve Differential Evolution hybrid Particle Swarm (SaDEPS) 

optimization algorithm for optimal reactive power dispatch 

problem. In this method, each particle is updated by a randomly 
selected strategy from a candidate pool, which contains strategies 

with different searching behaviors. SaDEPS applied to optimal 

reactive power dispatch is evaluated on IEEE 14-bus system. The 

numerical results, show that SaDEPS could find high-quality 

solutions with higher convergence speed and probability. 
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I. INTRODUCTION 

Reactive power dispatch problem has a significant  

influence on secure and economic operation of electric power 

systems. Reactive power d ispatch optimization determines 
control variables, such as generator voltages, transformer taps 

and shunt capacitors. Meanwhile, a  given set of physical and 
operating constraints should be satisfied, such as nonlinear 

power flow equations, equality and inequality constraints. 
Since t ransformer tap  ratios and outputs of shunt capacitors 

have a discrete nature, while bus -voltage magnitudes and 

angles of generators are continuous variables, the reactive 
power dispatch problem can be formulated as a large-scale 

mixed integer nonlinear programming problem with a mixture 
of discrete and continuous variables. This complex 

combinatorial optimizat ion problem involving nonlinear 
functions may have many local optima, which is very difficult  

to obtain satisfying solutions. 

Many techniques ranging from conventional mathematical 
methods to computational intelligence-based techniques have 

been applied to solve this problem. The classical methods, 
such as linear programming [1], nonlinear programming [2], 

quadratic programming [3], the mixed integer programming  
[4], the Newton method [5] and interior point techniques [6, 7] 

have been used. The above methods would offer fast 

convergence in comparison with other methods. Nevertheless, 
these methods have severe troubles in handling the nonlinear 

and discontinuous objective functions with many local optima. 

In order to maintain population diversity adaptively for 

optimal reactive power dispatch problem, th is paper proposes 

a Self-adaptive Differential Evolution hybrid Particle Swarm 

(SaDEPS) optimization algorithm. In the presented method, 
each particle is renewed by a randomly selected strategy 

according to its dynamic probability in candidate pool by trial -
and-error scheme. Furthermore, a self-adaptive learn ing 

framework is used to probabilistically steer updating strategies 
with d ifferent features in parallel to optimize problems with 

different fitness landscapes. The presented method is tested on 

IEEE 14-bus, 30-bus and 57-bus systems, comparing with 
several other state-of-the-art variants of PSO algorithms. The 

rest of this paper is organized as follows: Section 2 describes 
mathematical formulation of optimal reactive power dispatch. 

SaDEPS is introduced in detail in Section 3. Section 4 
proposes comparative experiments and analyzes the 

experimental results. Finally, the conclusion and future work 

are summarized in Sect ion 5. 

II. PROBLEM FORMULATION 

A. Active Power Loss Minimization 

The objective of the react ive power dispatch optimization  

is to minimize the active power loss  in the transmission 

network, which is defined as follows: 
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where N is the number of transmission lines; Gk is the 
conductance of the kth line; Vi and Vj are the voltage 

magnitude at the end buses  i and j of the kth line, respectively; 
and θi and θj are the voltage phase angle at the end buses i and 

j. 

B. Voltage Profile Improvement  

Bus voltage is one of the most important security and 
service quality indices. Improving voltage profile can be 

obtained by minimizing the load bus voltage deviations from 
1.0 per unit. The objective function can be expressed as: 
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where NPQ is the set of numbers of PQ buses; Vi is the 

voltage magnitude at bus  i. 
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C. Objective Function of Reactive Power Dispatch 

Control variables are self-constrained and dependent 

variables are constrained by adding them as penalty terms to 
the objective functions. Thus, the above-mentioned problem 

can be generalized as follows: 

Minimize  
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where λ V and λQ are penalty factors having large positive 

value, which are set as 500 in  this study; ω1 and ω2 are weight 
coefficients, which are selected as 0.9 and 0.1, respectively; α 

is the set of numbers  of load-buses on which voltage is 
violation, β is the set of numbers of generator buses on which 

generator reactive power is vio lation; ΔVL is the vio lation of 

load-bus voltages, ΔQG is the violation of generator reactive 
power. 

III. SELF-ADAPTIVE DIFFERENCE EVOLUTION HYBRID 

PARTICLE SWARM OPTIMIZATION ALGORITHM 

A. R3pso 

In canonical PSO algorithm, each particle in the population 

(swarm) flies to its previous best position and the global best 

position. The mechanis m of this motion can result a fast 
convergence rate, but easily trapped in local optima for multi-

modal problems. Nich ing is an important technique for multi-
modal optimizat ion. In that variant of PSO, the velocity 

updating equation is displayed as follows:  
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, is set to 
0.7298 with φ = φ1 + φ2 = 4.1, φ1 and φ2 are both set to 2.05. 
pbesti represents the best location in the search space ever 

visited by particle i and gbestd has been replaced by pnbestid; 
pnbestid denotes best-fit personal best in the ith neighborhood, 

representing the neighborhood best for the ith particle. Here, 
pnbestid is now used as the local leader fo r the ith part icle;  

randi1d and randi2d are two uniformly d istributed random 

numbers independently generated within [0, 1] for the dth 
dimension; t_X is a trial vector. Note that, there are 4 variants 

of lbest PSO known as r2pso, r3pso, r2pso–lhc and r3pso–lhc. 
In SaDEPS, r3pso is employed due to its relat ively moderate 

parallel search and convergence capability, compared with 
other variants of lbest PSO. 

B. DbV 

In most velocity updating strategies, such as the one 

described in Eq. (10), the generated velocity vector can be 
treated as the moderate modificat ion of the old velocity vector 

according to the influences of neighborhood particles, which  

results in the fact that it is hard to be quickly adapted to the 
different optimization stages of reactive power dispatch 

problem. Motivated by the strategy DE/current-to-rand/1, DbV 
avoids progressively changing the velocity but completely  

recombines the velocity based on the difference information. 

Different to DE/current-to-rand/1, DbV not only utilizes the 
difference information to recombine the velocity vector. 

Instead, the pbest is used as an attractor to guide the fly ing 
direction of particle. In the DbV strategy, the following 

velocity updating equation is used: 
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where Xr1d and Xr2d are the dth variables of two randomly  
selected other particles; Viadid is the difference vector; c 

represents one number randomly generated according to  the 
Gauss distribution with mean 0.5 and standard deviation 0.2;  

Vmax and Vmin  represent the pre-defined maximum and 
minimum velocity. The difference in formation is obtained by 

Eq. (6-7) is used to generate the new velocity  vector. It  can be 
observed that this velocity updating does not rely on the past  

experience. 

C. MDE 

1) Mutation 
First, MDE operator employs the mutation operation to 

produce a mutant vector Vi,G from the mutation operator 
family below with respect to each individual Xi,G, so-called  

target vector, in the current population. For each target vector 

Xi,G at the generation G, its associated mutant vector can be 
generated via certain mutation strategy. In this paper, the 

following mutation strategies are randomly selected by 
roulette wheel selection with equal probability, yielding a 

greatly diversified mutant vector. As a result, this multi -
mutation operator may be helpful for reactive power d ispatch 

problem to escape from local optima. The most frequently 
used mutation strategies are modified for react ive power 

dispatch as follows: 
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where the indices ri1, ri2, ri3, ri4, ri5 are mutually exclusive 

integers randomly  generated within  the range from 1 to 
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population size, which are also different from the index i. 
These indices are randomly generated once for  each mutant 

vector. The scale factor F is a positive control parameter for 
scaling the difference vector. K is randomly chosen within the 

range [0, 1]. In this paper, the parameter F is approximated by 

a normal distribution with mean value 0.5 and standard 
deviation 0.02, denoted by N(0.5, 0.02). 

2) Crossover 
After the mutation phase, crossover operation is applied to 

each pair of the target vector Xi,G and its corresponding 
mutant vector Vi to generate a trial vector: Ui. In  the basic 

version, DE employs the binomial (uniform) crossover defined 
as follows : 
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3) Selection 
The selection operation can be expressed as follows : 
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D. Self-Adapting and Re-Initialization Mechanism 

In princip le, it is the ultimate purpose that we use a self-

adaptive mechanis m to increase the probabilities of using 

suitable updating strategies for different problems, based on 
the feedback of their previous performance. In this paper, 

updating strategy is selected from the candidate pool 
according to the probability learned from its success rate in  

generating improved solutions. More specifically, at each  
generation, the probabilities of choosing each strategy in  the 

candidate pool are summed to 1. These probabilities are  

gradually adapted during evolution in the following manner.  
Assume that the probability of applying the kth strategy in the 

candidate pool in the current population is  pk, k = 1, 2, …, K, 
where K is the total number of strategies  contained in the pool. 

The probabilit ies with respect to each strategy are init ialized as 
1/K, i.e., all strategies have the equal probability to be chosen. 

We use the roulette wheel selection method to select one 
strategy for each  particle in  the current population. At each  

generation, each particle i is updated by kth strategy as pk. The 

probability of choosing the kth strategy is updated by 

1
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IV. NUMERICAL RESULTS 

In order to obtain comparative results, eight algorithms  

including the proposed SaDEPS are selected to optimize the 
test power systems. The max population size for each  

algorithm is 20. For each algorithm, the experiment consists of 
31 independent runs. And the Max Fitness Evaluations 

(MAX_FEs) equals 5000 (14-bus) for each run. Weight 

coefficients ω1 and ω2 are selected as 0.9 and 0.1. The penalty 
factors λV and λQ are constants with values 500. The IEEE 14-

bus power system, which is shown in Fig. 1, consists of 17 
branches, 5 generator buses and 11 load-buses. 
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FIGURE I. IEEE 14-BUS POWER SYSTEM 

Table 1 lists the results of the experiments that conducted 

on the IEEE 14-bus system with regard to the final solution 
quality. We sort the solutions in 31 runs from the smallest 

(best) to the largest (worst) and present the following: 
minimum (Min), median (Med), maximum (Max), average 

(Mean), standard deviation (Std) function values. The best 
results among the peer algorithms are shown in bold.  

TABLE I.  CALCULATED FITNESS VALUE OF IEEE 14-BUS POWER 

SYSTEM. (P. U.) 

Methods Min Med Max Mean Std 

PSO 0.0762 0.0859 9.1640 0.7946 1.6810 

R3PS 0.0762 0.0790 1.5082 0.3925 0.4591 

R3PS-ls 0.0847 1.2356 7.6779 1.3750 1.3592 

CLPS 0.0785 0.0949 1.1448 0.1935 0.2560 

GOPS 0.0788 0.0877 1.0432 0.1789 0.2447 

DNSPS 0.0773 0.0807 0.0851 0.0805 0.0022 

SLPS 0.0767 0.0777 0.0807 0.0780 0.0008 

SaDEPS 0.0762 0.0762 0.0833 0.0769 0.0016 

V. CONCLUSION 

SaDEPS optimization algorithm has been proposed to deal 

with the application of reactive power dispatch in power 
system. In this work, each particle is updated by a randomly  

selected strategy from a candidate pool, which contains 
strategies with different searching behaviors. The probabilit ies 

of different strategies in the candidate pool change 
dynamically according to their p revious successful searching 

memories. The proposed mechanism may effectively increase 
the diversity of the swarm population, resulting much a 

stronger global search capability. Thus, it could be very  

suitable for reactive power dispatch problem, especially with 
large scale of power grid and many local optima. The 

performances of SaDEPS demonstrated on IEEE 14-bus, 30-
bus and 57-bus power system show that the proposed method 

has powerful ability to search high-quality solutions with 
higher stability and advantageous convergence precision. 
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Accordingly, SaDEPS may be an effective tool to optimize 
reactive power d ispatch. 
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