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Abstract—The extremely high sampling rate is a challenge for 

ultra-wideband (UWB) communication. In this paper, we study 

the compressed sensing (CS) based impulse radio UWB (IR-UWB) 

signal detection and propose an IR-UWB signal detection method 

based on compressive sampling matching pursuit (CoSaMP) 

algorithm. The proposed approach relies on the fact that UWB 

received signal is sparse in the time domain. The new method can 

significantly reduce the sampling rate required by the detection 

and, moreover, when comparing with the existing matching 

pursuit (MP) based detection method, it provides a better 

performance in case of the low signal-to-noise ratio. Simulation 

results demonstrate the effectiveness of the CoSaMP algorithm 

used in IR-UWB signal detection. 

Keywords-IR-UWM; compressed sensing; CoSaMP; MP; 

signal detection 

I. INTRODUCTION 

UWB is one of the key technologies in the short-range 
broadband wireless communication. With the characteristics of 
high data rates, low power, and low cost, UWB can be  applied 
to many scenarios such as high-speed short-range wireless 
personal area networks (WPAN), ranging, positioning, 
monitoring, and wireless sensor networks (WSN)[1]. In some 
applications mentioned above, UWB signal detection is a very 
important component. Hence there is a need to well study the 
UWB signal detection to make it more practical. 

However, when using the traditional algorithm for UWB 
signal detection, a very high sampling rate is required 
according to Shannon-Nyquist sampling theorem for the UWB 
signal’s high bandwidth that is up to several gigahertzes. This 
is difficult to implement with a practical analog-to-digital 
converter (ADC) [2]. The emerging theory of CS enables the 
reconstruction of sparse or compressible signals from a small 
set of random measurements. If adopted by the signal 
detection, the CS theory may make the sampling rate much 
lower than the Nyquist rate. The authors in [3] and [4] proved 
that it is effective to detect signal by processing the sampling 
values of compressed sensing directly. Literature [5] proposed 
a MP based signal detection method. A UWB signal detection 
method based on MP algorithm was developed in [6]. Whereas 
in a circumstance with low signal-to-noise ratio, the 
performance of MP is not good. Thus, it leaves room for 
improvement. Furthermore, in order to reach a high 
performance, the number of mixer-integrators employed by 
the receiver is too large to be realized.  

In this paper, we propose a CoSaMP [8] algorithm based 
IR-UAB signal detection. Without other extra processes, the 

algorithm is formed from extracting information directly from 
sampling values acquired by CS. The complexity of the 
proposed detection method is reduced dramatically when 
comparing with the GLRT detector. Furthermore, computer 
simulation results are provided to verify the performance of 
the proposed method, which show that the performance of the 
new method is superior to that of the MP, especially in low 
signal to noise ratio. 

II. COMPRESSED SENSING BACKGROUND 

CS is a technology that can recover the high-dimensional 
signals from the low-dimensional and sub-Nyquist sampling 
data with the prior information that the signals are sparse or 
compressible [9]. The mathematical model of CS can be 
described as follows. 

y Ax


where 
1Nx R  is a signal which can be sparsely represented 

in a basis matrix 1 2{ , , , } N N

N R     
, that is , 

x 
, 

the vector 1 2[ , , , ]T

N    1NR  consists of  K (K<<N) 

nonzero elements (we often say that   is K-sparse). The 

vector
M NA R   (K<M<<N) is a random measurement matrix 

that is uncorrelated with


. 
1My R 
 denotes the M samples 

obtained by CS. Our purpose is to recover the sparse 

coefficient vector   from the M samples, and then multiply it 

by the basis matrix


, thus recovering the original signal x . 

In order to figure out the sparse coefficient vector , we 

need to find the solution to the following 0l  norm 
optimization problem [10] 

0
argmin . .s t y A   



Unluckily, solving the optimization problem (2) is 
prohibitively complex for it’s a NP-hard nonconvex 

optimization problem. A modified problem is to replace the 0l  

restrict with the 1l  restrict 

1
argmin . .s t y A   


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This optimization problem transforms (2) into a convex 
optimization problem which can be easily solved with linear 
programming. 

III. IMPULSE RADIO UMB THEORY 

The US Federal Communications Commission (FCC) 
provided a definition that a signal can be classified as an UWB 
signal if its fractional bandwidth is greater than 0.2 or its 
bandwidth is 500MHz or more [1]. According to this 
definition, there may be several ways to generate UWB 
signals, among which impulse radio is the most common 
method. In this paper, we focus on the impulse radio UWB 
(IR-UWB) signal. 

Owing to different approaches are employed to generate 
the pulse train, the UWB systems can be divided into two 
main categories: time hopping UWB(TH-UWB) and direct 
sequence UWB(DS-UWB). To take a specific case, we will 
discuss the PAM-DS-UWB signal and its detection in the 
following. A block diagram of the PAM-DS-UWB transmitter 
[1] is shown in Fig. 1. 

Repeat 
Encoder
(Ns,1)

Binary 
Sequence
（+1,-1）

Transmission 
Encoder

PAM 
Modulator

Pulse
Shaper
p(t)

*b m *m )(tsb

 
FIGURE I. BLOCK DIAGRAM OF PAM-DS-UWB TRANSMITTER 

In Fig.1, b is a binary sequence to be sent and generated at 

a rate of 
1/b bR T

 (bits/s). After passing through the repeat 

encoder, every bit of the sequence b is repeated sN
times, 

therefore we get a new sequence *b where *b  has a rate of 

/ 1/cb s b sR N T T 
(bits/s). Then the second system of the 

block diagram converts *b into a sequence m  that contains 

two kinds of elements, 1  and 1 . The conversion equation 

of this is 
*2 1( )j jm b j     

. When the sequence m  
enters the transmission encoder, a  denotes a binary zero 

correlation duration (ZCD) code composed of 1 ’s  is applied 
to it [11] and the output of the transmission encoder is a new 

sequence *m , which can be expressed as 

0 0 0 1 0 1( , , , , , ) ( , , , , , )j j jm m a m a m a m m m    



The period of the ZCD code 0 1 1( , , , , , , )j ja a a a a 
 

is pN
， we often assume that p sN N

(a more general 

hypothesis is that pN
is an integer multiple of sN

). The rate of 

sequence *m  is 
/ 1/c s b sR N T T 

 (bits/s). Next, the 

sequence *m  goes into the PAM modulator, and a sequence 

of unit pulses (Dirac pulses
( )t

) located at times sjT
 are 

generated by the PAM modulator [11]. The rate of the 

sequence of unit pulses is 
/ 1/p s b sR N T T 

 (pulses/s). At 
last, the output of the PAM modulator passes through the pulse 

shaper, whose impulse response is
( )p t

. The duration of 
( )p t

is mT
, and m sT T

. Thus, we get the final output signal
( )s t

, 
which is given by  

*( ) ( )j s

j

s t m p t jT




 



( )p t



2

2

22

2
( ) (1 4 )

t
t

p t e








 


where 
2 24   is the pulse shaper factor, and 

2 is the 
variance. 

In practice, A PAM-DS-UWB transmitter’s parameters set 

by the user are: the average transmit power Pow , the number 

of bits generated by the binary source numbits , the sampling 

frequency cf , pN
, sT

, sN
, mT

, and 
2 [1]. 

Fig. 2 shows an example of the PAM-DS-UWB signal. 
From this figure we can see that PAM-DS-UWB signal 
presents an intuitive sparse characteristic in the time domain. 
That is, the signal has a few nonzero values. For a fixed and 
known PAM-DS-UWB transmitter, the number of the nonzero 
values (the so-called sparsity level, denoted as s ) can be 
calculated using 

s m cs numbits N T f   


Thus, according to the Section II, the basis matrix of the 
PAM-DS-UWB signal can be an identity matrix. 

Based on the above, we can apply the CS theory into the 
PAM-DS-UWB signal detection. 

 
FIGURE II. PAM-DS-UWB SIGNAL 

IV. CS BASED IR-UWB SIGNAL DETECTION 

A. The Signal Detection Model 

We implement the detection by distinguishing between the 
following two hypotheses 

0 1: : ( )H y An H y A x n    

where 
1Nx R  denotes the PAM-DS-UWB signal to be 

detected, and
2~ (0, )Nn N I

 is the independent and 
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identically distributed additive white Gaussian noise. 
M NA R   (M<<N) is a known random measurement matrix, 

and 
1My R 
 is the sample obtained by the detector. Next, we 

let 

1 1 1 0Pr(  chosen  when  true) and Pr(  chosen  when  true)d fP H H P H H 
 

denote probability of detection and probability of false alarm 
respectively [3]. 

B. CoSaMP based IR-UWB signal detection algorithm 

In this section, we proposed a CoSaMP algorithm [8] 
based sparse signal detection. The procedure of the algorithm 
is as follows: 

Let 
M NR  denote the measurement matrix with 

restricted isometry constant 2s c 
 ( c is a constant), u  

denote the noisy sample vector. Furthermore, the sparsity level 

is s , and the output target signal a is an 
-sparses

 
approximation. 

Initialize the approximation 0 0a 
and residual v u . 

Initialize the iteration counter 1k  . 

Find a proxy 
y v 

 for the current residual and locate 

the 2s  largest columns of the proxy 

2( )ssupp y 
 

where 2( )ssupp y
 means the index set of the 2s  largest 

columns of 
y

. 

3. Merge the index set of the newly identified components 
with that of the largest components of the current 

approximation 1( )kT supp a 
 

Solve a least squares problem to make an estimation of the 

signal  
†|T Tb u 

; 
| 0cT

b 
 

where 
† 1( )T T T T

      
. For an arbitrary 

1Nb R  , 

assume that T  is a subset of { 1,2, , N },  we define 

 ,

0 , otherwise| ib i T

Tb



. 

5. Reserve the s largest components in the approximation 
obtained by the step 4 to produce a new approximation 

k sa b
 

6. Update the residual kv u a 
 

7. 1k k  , if 2
v 

, where   is a known constant, 
then go to step 2; or else , go to step 8.  

8. If 
a 




, where  is a threshold value, detect 1H
; 

otherwise, choose 0H
. 

V. SIMULATION 

In this section, the performances of the CoSaMP and the 
MP detection algorithm are compared. First, we set the 
parameters of the PAM-DS-UWB transmitter as follows:

30 (dBm)Pow  
, 2numbits  ,

50 9 (Hz)cf e
, 

10 (s)pN 
, 

3 9 (s)sT e 
, 

5sN 
, 

0.5 9 (s)mT e 
, 

2 0.25 9e   . 
Hence the length of the PAM-DS-UWB signal to be detected 

is 
1500s c sN numbits N f T    

[12]. Moreover, according 
to (7), the sparsity level of the signal 

250s m cs numbits N T f    
.The signal shown in Fig. 3. 

In simulation, we let the measurement matrix 
M NA R   

be an independent and identically distributed Gaussian random 
matrix with zero-mean and unit variance. Further, the mean 
and variance of the additive white Gaussian noise n  are 0 and 
1, respectively. For the CoSaMP detection algorithm, we set 

constant
510  . For the MP detection algorithm [5], we set 

the number of iterations as 10. Suppose that the probabilities 

of the two hypotheses are equal, that is r 0 r 1P ( ) P ( ) 0.5H H 
. 

The probability of detection is the statistic result of 10000 
trials. 

Fig.4. illustrates dP
 as a function of M , which is the 

number of measurements. We set the SNR as -2dB, and 

0.01fp 
. M ranges [150, 750]. The threshold value   and 

the threshold value of MP algorithm are both chosen by Monte 
Carlo simulations [5]. The number of Monte Carlo simulations 
is 2000. If we use the traditional detection algorithm, the 
number of measurements should be 

1500s c sN numbits N f T    
 according to the Shannon-

Nyquist sampling theorem. As we can see from this figure, the 
proposed method can acquire a very high probability of 
detection at about 20% of the Nyquist rate. What’s more, in 

 
 

FIGURE III.  THE PAM-DS-

UWB SIGNAL OF INTEREST 

FIGURE IV.  SNR=-2DB 
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FIGURE V. M=300 OR M=500, 

.fp 0 01
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FIGURE VI.  M=150, SNR= -

2DB 
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the same condition, the proposed method is superior to the MP 
based sparse signal detection method. 

Fig. 5 shows dP
 as a function of the SNR, which ranges [-

10, 5]. We consider 300M   and 500M   respectively. Let

0.01fp 
, According to Fig. 5, we can see that the 

performance of the CoSaMP detection algorithm is better than 
that of the MP detection algorithm when the SNR is less than -
1dB. 

Fig.6 illustrates dP
 as a function of fP

, which ranges [0, 

0.2]. Let 150M   and SNR= -2dB. As we can see from Fig.6, 
the CoSaMP detection algorithm is superior to the MP 
detection algorithm in this situation.  

VI. CONCLUSION 

In this paper, we present a CS based IR-UWB signal 
detection model and an IR-UWB signal detection algorithm 
based on CoSaMP. Compared with the GLRT based model, 
the proposed model is easier to realize.  The new detection 
algorithm solves the detection problem by directly processing 
the sampling values obtained by CS. It is proved that the 
proposed algorithm can detect the IR-UWB signal at a rate 
much lower than the Nyquist rate. Numeric simulations show 
that the new algorithm yields performance gains over the MP 
based detection algorithm in case of the low SNR. 
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