

Realizing a Distributed Performance Testing System
Based on TTCN-3

X.M. Liu
College of Information
Beijing City University

Beijing, China

S.M. Liu
College of Science and Information

Qingdao Agriculture University
Qingdao, China

Y.P. Liu, J. Wu
College of Computer
Beihang University

Beijing, China

Abstract—In this paper a distributed testing system is designed,
which provides a mechanism of node communication, test script
deployment, test scheduling, execution-driving and test result
collection in distributed environment. A workload model is
established, by which testers can describe the performance
testing requirement. A performance testing framework is given,
which simulates user behaviours in real environment based on
virtual users so as to generate workload from the system under
test. It can control the execution of virtual users by TTCN-3
standard interface. After executing the performance testing, test
report is generated by extracting log. A method of generating
performance test-case is studied by reusing functional test scripts.
By executing performance testing on an online bookstore, this
paper demonstrates the availability of the method of reusing
TTCN-3 functional test scripts and the capability of distributed
performance testing system established.

Keywords-TTCN-3; distributed testing system; performance
testing; test suite; system under test

I. INTRODUCTION
TTCN-3(Testing and Test Control Notation) provides a set

of unified language standard for different users and tool
developers, which can be used as a description language to test
the response system of various communication ports [1].
Research on performance testing based on TTCN-3 is very
important to broaden the application field of TTCN-3. At
present, the performance testing tools based on TTCN-3 are
very rarely, so as to simulate the load, it is usually done by
adding the network traffic generator on the basic TTCN-3 test
system[2]. But it is a network testing tool, which can only test
the network delay between two nodes and didn’t consider the
business logic in a real scenario and other load indexes [3].

In this paper, the distributed performance testing system
has been designed, which expands TTCN-3 by using typical
performance testing methods. The transparent communication
method between nodes is also designed, which can solve many
communication problems such as the node addressing,
message management, timeout retransmitting, message
distribution, event registration, monitoring etc. [4].

II. TTCN-3
TTCN-3 is a testing language based on text. The syntax of

its core language is similar with the traditional programming
language, but it has special test propagation characteristics. [5-
6].The top element TTCN-3 is module which is the basic
building block. TTCN-3 is used to describe testing [7]. The
test requirement is represented by test-cases and test data.
Test-case is the most important behaviour of TTCN-3, which
describes the test requirement, depicts the test behaviour logic
and specifies the test criteria. In a TTCN-3 testing system, a
test-case is allowed to run at the same time [8]. Namely,
TTCN-3 doesn’t support the concurrency execution between
test-cases [9]. The TTCN-3 testing system can be viewed as
the entity sets which are interactive [10]. Each entity is
associated with a specific function in the testing system. These
entities manage many operations, such as executing test,
interpreting or executing the compiled TTCN-3 code, realizing
the correct SUT, executing the external function, processing
the clock and so on [11]. TTCN-3 solves the problem of
describing the testing system from two levels, namely,
platform-independent and platform-dependent. In the
platform-independent level, it focuses on describing the test
logic (including test-case, test data, test components), and
cannot solve the test execution. In the platform-dependent
level, it focuses on describing how to interact with SUT and
cannot describe the test logic.

TTCN-3 looks like an ordinary programming language
with expanded test, including dynamic testing configuration,
matching mechanism, timer support, processing test decision
and communication mechanism. The testing system provides
the mechanism to execute TTCN-3 from two levels of the
execution logic and test adapter. The TTCN-3 test-case can be
independent to the SUT and the test platform through a
standard interface.

III. THE DISTRIBUTED TESTING SYSTEM
The wide application of distributed technology also

gradually affects the design of testing system. On one hand, in
order to test the distributed software system, the testing system

International Conference on Computer Information Systems and Industrial Applications (CISIA 2015)

© 2015. The authors - Published by Atlantis Press 287

has to support the distributed testing; On the other hand, the
testing system which adopts distributed architecture not only
make full use of limited hardware resources and human
resources, improve the efficiency of executing test, reduce the
cost of time and resources, but also can simulate the actual
operating environment, support some special testing scenarios
and produce the required test load.

The distributed execution framework defines the system
structure of testing execution platform, realizes the effective
management of all testing execution nodes, and provides the
basic services needed to execute the distributed testing. For the
choice of the distribute architecture, this paper adopts the
distributed strategy which is centralized. The distributed
system is shown in fig.1.

FIGURE I. THE DISTRIBUTED ENVIRONMENT.

It includes two kinds of nodes, that is Centre Node and
Execution Node. The TTCN-3 testing script runs on the
execution node, it describes a use-case how to test the system,
including test input, test results and test execution conditions.
It completely describes the process of testing the system in a
given test target. The distributed testing system designed in
this paper is shown in fig.2.

FIGURE II. THE ARCHITECTURE OF DISTRIBUTED TESTING

SYSTEM.

It includes three kinds of nodes, which are Centre Node,
Execution Node and Nodes Register. The interaction among
them is realized by the communication middleware which
transfers the asynchronous communication information based
on message and is realized by the socket based on
TCP(Transmission Control Protocol). The execution node
communicated with the SUT through the test adapter, as to
meet the needs from the SUT(System Under Test) which
needs different codec rules and interactive communication
modes.

Based on the transaction as a unit, the communication
resources are organized and managed. In the process of
running transaction, the thread to deal with the communication
process needs to put the resources into the recovery device, the
resources are not able to determine whether will be used in the
future and are recycled when not in use. The distributed task
can be completed by collaborating which involves information
interaction. Therefore, in order to make the different nodes

exchange data and cooperate effectively according to the
requirements, we must formulate corresponding rules for
interactive tasks and synchronous timing. This paper adopts
the hierarchical division way to organize the testing task
execution. Tasks are independent between layers, each layer
doesn’t need to know the mechanism to implement the next
layer of it, and only need to know the interfaces between the
layers. When the mechanism to implement a layer is changed,
the upper and lower layers of it are not affected.

IV. THE PERFORMANCE TESTING

A. Describe and Control the Performance Testing
The performance testing model studied in this paper

combined with the advantages of load simulation based on
network characteristics and user behaviours, the performance
testing scenarios based on virtual users and load indexes are
presented. They provide the basis to describe and control the
performance test-cases. Virtual users represent the users to
use a function of the SUT, so as to simulate user behaviours in
accordance with the business process in an actual operation.
The testing process based on virtual users is an iterative
process of concurrent behaviours. To design the performance
testing needs to consider how to organize virtual users. So the
virtual user organization hierarchy is proposed and shown in
fig.3.

FIGURE III. THE VIRTUAL USER ORGANIZATION

HIERARCHY.

The node mappings allocate the tasks between the
execution nodes to make use of the execution resources in the
distributed environment. Within a node, a test bed is
responsible for creating and destroying the virtual users, which
maintains the number of concurrent virtual users required at a
level, so as to simulate the actual load. This paper introduces
two new indexes and a performance index. The load model is
based on above three indexes and shown in fig.4.

FIGURE IV. THE LOAD MODEL.

In the fig.4, each index is connected with the curve which
is called as the constraint line. If each index is regarded as a
circle, the two ends of each connecting line were located
separately in a point on different circles. The point is called
the connection point. For the set V composed of three indexes,
there are three connecting points according with the indexes
located in the V. If there are three constraint lines respectively

288

to the three connection points for the end points to form a
circle, the three indexes from V constitute a constraint group.

B. The Performance Testing by TTCN-3
Through TTCN-3 language and TTCN-3 system, we can

construct the performance testing framework and realize the
virtual user management, load controlling, dynamic parameter
management, communication connecting management,
execution monitoring and track record. The performance
testing framework implements the execution bed of the
execution node in a distributed testing environment. The
execution bed is the driver to execute TTCN-3. Its purpose is
to control the execution of TTCN-3, and then implement the
virtual user management, load generation, test monitoring and
resource management. The relationship among the function
nodes from the framework is shown in fig.5.

FIGURE V. THE RELATIONSHIP OF PERFORMANCE TESTING

FRAMEWORK.

In order to reduce the development workload and shorten
the cycle with greater efficiency, an automatic generator of
TTCN-3 performance testing code is implemented in this
paper. In a test cycle, the function testing precedes the
performance testing, which means that a lot of available
function test suites have already existed before the beginning
of the performance testing, including TTCN-3 testing code,
test adapter and codec. On the other hand, after 7 years of
developments, TTCN-3 already has a plenty of function test
suite that are developed, which are the basis of performance
testing. In this paper, the TTCN-3 function test-cases are
parsed by the TRex open source tool (the TTCN-3 Refactoring
and Metrics Tool), then an abstract syntax tree is generated.
According to the position information of the source code
corresponding to the node in the syntax, the replacement node
is labelled in the source code. By analysing the syntax tree, the
new code is generated for the replacement corresponding to
the nodes, and at last the original code is read. The characters
outside the replacement are output as original. The characters
inside the replacement are output as new codes to generate the
performance test-cases.

V. CASE STUDIES
In this paper, the performance test-cases are generated on

the basis of existing TTCN-3 function test-cases which
describe the process of using an online bookstore and
inspecting and deciding the behaviours of SUT. The test
deployment scripts are mainly used to design the distribution
scheme of test scripts in different test points and the
communication between different test points and the test
control centre, and the path of the TTCN-3 script file deployed
in each test execution node. The load configuration describes

the performance testing scenario which is composed of
Phrases with differ load levels to describe the input intensity
submitted by different users, including the command, task and
data submitted. In this example, the test load configuration
script contains 11 Phrases of the static load index to describe
the ratio of different types of virtual users. Every Phrase has a
different dynamic load index. The performance of SUT is
focused on when the number of concurrent users are different,
so the number of concurrent users and the thinking time are
chosen to be controlled, the thinking time is constant in each
phrase. The test results are extracted from the performance
measurement. The number of concurrent users is a variable.
The response time and throughout and the ratio of success are
dependable variables, it will get the metric map shown in Fig.6.

FIGURE VI. THE PERFORMANCE METRIC MAP.

In fig.6, as the number of concurrent users began to
gradually increase from 1, the response time of SUT increased
linearly, and the ratio of the success session retained 100%.
The throughout increased at the beginning, the SUT worked
normally and can respond to the load smoothly. When the
number of concurrent users increased to 13, the response time
significantly increased, the throughout began to decrease, the
ratio of the success session also gradually decreased, then the
SUT emerged the performance bottleneck. The user accesses
to the online bookstore with 0.1sec thinking time, the online
bookstore can support a maximum of 13 concurrent users.

VI. CONCLUSION
In this paper, the distributed execution strategy and

framework are designed to support the performance testing.
The method of describing and controlling the performance
testing load is also proposed. And the technology to
implement the load description controlling is studied, which is
based on TTCN-3 system. This paper also analyses and
compares the function test-cases and the performance test-
cases based on TTCN-3. Then it puts forward a performance
testing method based on the test suite reuse, which can
automatically reconstruct the TTCN-3 function test-case and
then transfer the function test-case into the performance test-
case. It will reduce the development workload of testers.
Finally, through the performance testing of an online
bookstore, the method and process of TTCN-3 performance
testing are demonstrated in a distributed environment by use of
the system designed in this paper. Through the analysis of the
results, the performance bottleneck of SUT is found.

REFERENCES
[1] Gábor Ziegler, György Réthy. Performance testing with TTCN-3 [R],

TTCN-3 User Conference, 2010
[2] Mahnaz Shams, Diwakar Krishnamurthy, Behrouz Far. A model-based

approach for testing the performance of Web Applications [J].

289

Proceedings of the 3rd international workshop on Software quality
assurance: 54 - 61, 2011

[3] Katerina Goseva-Popstojanova, Fengbin Li, Xuan Wang, and Amit
Sangle.A Contribution Towards Solving the Web Workload Puzzle [J].
Proceedings of the 2006 International Conference on Dependable
Systems and Networks, 2011

[4] Raúl PeñaOrtiz, Julio Sahuquillo, Ana Pont, José A. Gil. Modeling
continuous changes of the user's dynamic behavior in the WWW [J].
Proceedings of the 5th international workshop on Software and
performance: 175 - 180, 2012

[5] Barford, P. and Crovella, M. Generating Representative Web Workloads
for Network and Server Performance Evaluation [J]. Proceedings of the
1998 ACM SIGMETRICS joint international conference on
Measurement and modeling of computer systems:151-160, 1998

[6] Diwakar Krishnamurthy, Jerome A. Rolia, Shikharesh Majumdar. A
Synthetic Workload Generation Technique for Stress Testing Session-
Based Systems [J]. IEEE Transactions on Software Engineering.
32(11):868-882, 2006

[7] Helmut Neukirchen, Benjamin Zeiss, Jens Grabowski. An approach to
quality engineering of TTCN-3 test specifications [J]. International
Journal on Software Tools for Technology Transfer, 10(4):309-326 ,
2010

[8] Ina Schieferdecker, Bernard Stepien, Axel Rennoch. PerfTTCN, a TTCN
language extension for performance testing [J]. Testing of
Communicating Systems, 2012

[9] Zhen Ru Dai, Jens Grabowski, Helmut Neukirchen. Timed TTCN-3 - a
real-time extention for TTCN-3 [J]. Proceedings of the IFIP 14th
International Conference on Testing Communicating Systems XIV: 407-
424. 2012

[10] Giovanni Denaro, Andrea Polini, Wolfgang Emmerich. Early
performance testing of distributed software applications [J]. ACM
SIGSOFT Software Engineering Notes. 29(1):94-103, 2012

[11] Dorina Petriu. Architecture-Based Performance Analysis Applied to a
Telecommunication System [J]. IEEE Transactions on Software
Engineering, 26(11): 1049 - 1065, 2011

290

	Introduction
	TTCN-3
	The distributed testing system
	The performance testing
	Describe and Control the Performance Testing
	The Performance Testing by TTCN-3

	Case studies
	Conclusion
	References

